首页> 外文期刊>Applied Mathematical Modelling >Differential quadrature procedure for in-plane vibration analysis of variable thickness circular arches traversed by a moving point load
【24h】

Differential quadrature procedure for in-plane vibration analysis of variable thickness circular arches traversed by a moving point load

机译:微分求积法对移动点荷载作用下的变厚圆拱的面内振动分析

获取原文
获取原文并翻译 | 示例

摘要

Point discretization methods such as the differential quadrature method (DQM) are well known to have difficulties in solving partial differential equations that involve the Dirac-delta function because the Dirac-delta function is a generalized singularity function and it cannot be discretized directly using the DQM. To overcome this difficulty, a simple differential quadrature methodology is proposed in this study, where the Dirac-delta function is expanded into a Fourier trigonometric series. By expanding the Dirac-delta function into a Fourier trigonometric series, this singular function is treated as non-singular functions, which can be discretized easily and directly using the DQM. The applicability of the proposed method is demonstrated by the in-plane vibration analysis of variable thickness circular arches traversed by a moving point load. The numerical results show that the pro-posed method is highly accurate and reliable.
机译:众所周知,诸如离散正交方法(DQM)之类的点离散化方法很难解决涉及Dirac-delta函数的偏微分方程,因为Dirac-delta函数是广义奇异函数,无法使用DQM直接离散化。为了克服这个困难,本研究提出了一种简单的微分正交方法,其中狄拉克-德尔塔函数被扩展为傅立叶三角级数。通过将Dirac-delta函数扩展为傅立叶三角级数,此奇异函数被视为非奇异函数,可以使用DQM轻松,直接将其离散化。通过对移动点载荷横穿的变厚度圆拱进行面内振动分析,证明了该方法的适用性。数值结果表明,该方法具有较高的准确性和可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号