首页> 外文期刊>Applied Mathematical Modelling >Exact solutions for anti-plane deformation of a cylindrically monoclinic wedge under concentrated loads
【24h】

Exact solutions for anti-plane deformation of a cylindrically monoclinic wedge under concentrated loads

机译:集中载荷作用下圆柱单斜楔的反平面变形的精确解

获取原文
获取原文并翻译 | 示例

摘要

This article studies anti-plane deformation of a cylindrically monoclinic wedge under concentrated loads. To the best of the author's knowledge, exact solutions to this type of wedge problem under concentrated loads are not available in the literature. By applying a newly defined argument to the displacements in terms of a holomorphic function in cooperation with a complex analogous Mellin transform, the exact solutions for the considered problems are obtained. The novel arrangements greatly simplify the formulation and result in concise complex shear stress equations that can be solved. With prescribed boundary settings, the closed-form solutions for Green's functions can be derived conveniently. Exact solutions are obtained for two kinds of boundary conditions. The stress fields obtained from the two cases are presented and discussed for certain combinations of anisotropic parameters. Contours of the generalized stress intensity factor, which is related to the direction of approach to the wedge apex and the material properties, are also shown. In addition, the results of a problem with distributed loads agree well with numerical solutions. The proposed method clarifies and simplifies the analysis and solution of related wedge problems. In determining the reduced orthotropic and isotropic cases to solutions under anti-plane deformation, the results are generated naturally.
机译:本文研究了圆柱单斜楔在集中载荷作用下的反平面变形。据作者所知,文献中没有针对这种楔形问题的精确解决方案。通过将新定义的自变量应用到全同函数的位移上,并与复杂的类似Mellin变换配合使用,可以获得所考虑问题的精确解。新颖的布置大大简化了公式,并产生了可以解决的简洁复杂的剪应力方程。通过指定的边界设置,可以方便地导出Green函数的闭式解。获得了两种边界条件的精确解。给出并讨论了两种情况下获得的应力场,其中涉及各向异性参数的某些组合。还显示了广义应力强度因子的轮廓,该轮廓与楔形顶点的接近方向和材料属性有关。此外,分布载荷问题的结果与数值解非常吻合。所提出的方法阐明并简化了有关楔形问题的分析和解决。在确定反平面变形下溶液的正交各向异性和各向同性情况时,自然会产生结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号