首页> 外文期刊>Applied Mathematical Modelling >Associations and dissociations with time-dependent reaction coefficients in finite polymer mixtures: The model and analytical-numerical method for solution by successive approximations
【24h】

Associations and dissociations with time-dependent reaction coefficients in finite polymer mixtures: The model and analytical-numerical method for solution by successive approximations

机译:有限聚合物混合物中具有随时间变化的反应系数的缔合和解离:通过逐次逼近求解的模型和解析数值方法

获取原文
获取原文并翻译 | 示例

摘要

The work deals with the association and dissociation reactions with time-dependent coefficients in finite mixtures of polymers dispersed in fluid media with solid components. The polymers are regarded to be formed by identical units, polymer-forming units (PFUs) and, thus, present homopolymers. The model takes into account the porosity of the dispersion-medium/polymer-mixture system. The work derives the model for the reactions in the finite mixtures. The model presents a non-autonomous quadratic finite ODE system in a time-independent hyperplane and is based on the conservation law for the total number of PFUs. A variety of engineering applications of the derived finite-mixture model are discussed. The simplest case of the finite mixtures, i.e., the monomer-dimer mixtures with time-independent reaction coefficients is completely analyzed. An analytical-numerical (AN) method of the successive-approximations (SA) type is proposed for solving the derived model. The AN/SA method includes explicit analytical expressions for each of the approximations in terms of the preceding approximation. The method is exact in the dissociation-only case. The approximations are expected to converge if the association-reaction coefficients are not too large and the zeroth approximations are not very far from the solution. The AN/SA method comprises two sequences of the approximations. If the first one converges uniformly in the entire time axis, then the limit function is a steady-state (or “dynamic equilibrium”) solution of the non-autonomous quadratic ODE system. The second sequence presumes that the first sequence is convergent in the above mentioned sense. The second sequence is intended for calculation of the solutions of initial-value problems for the above ODE system in a semi-infinite time interval. The main differences from common computational methods are formulated. The AN/SA method is quantitatively illustrated with a few examples of the settings in the aforementioned case of monomer-dimer mixtures, also in comparison with the explicit Euler method. The form of the AN/SA method allows especially efficient implementation on multi-processor/multi-core personal computers with graphic processing units even if the dimension of the state space is large. The developed model and method form a constructive framework for analysis or design of polymer mixtures dispersed in fluid-solid media. An application to prospective manufacturing of spatially heterogeneous polymer products is noted. A few directions for future research are proposed as well.
机译:这项工作是处理分散在具有固体成分的流体介质中的聚合物的有限混合物中的随时间变化的系数的缔合和解离反应。认为聚合物是由相同的单元,聚合物形成单元(PFU)形成的,因此是目前存在的均聚物。该模型考虑了分散介质/聚合物混合物系统的孔隙率。这项工作推导了有限混合物中反应的模型。该模型在与时间无关的超平面中提出了一个非自治的二次有限ODE系统,并且该模型基于PFU总数的守恒律。讨论了导出的有限混合模型的各种工程应用。完全分析了有限混合物的最简单情况,即具有与时间无关的反应系数的单体-二聚体混合物。提出了一种逐次逼近(SA)类型的解析数字(AN)方法来求解导出的模型。 AN / SA方法包括每个近似值的显式解析表达式(根据先前的近似值)。该方法在仅解离的情况下是准确的。如果缔合反应系数不太大并且第零近似离解不太远,则期望近似会收敛。 AN / SA方法包括两个近似序列。如果第一个在整个时间轴上均匀收敛,则极限函数是非自治二次ODE系统的稳态(或“动态平衡”)解。第二序列假定第一序列在上述意义上是收敛的。第二个序列用于计算上述ODE系统在半无限时间间隔内的初值问题的解。阐述了与常见计算方法的主要区别。与前述的单体-二聚体混合物的情况相比,还与显式的欧拉方法相比较,通过一些设置实例来定量说明AN / SA方法。 AN / SA方法的形式允许在具有图形处理单元的多处理器/多核个人计算机上进行特别有效的实现,即使状态空间的大小很大。所开发的模型和方法形成了用于分析或设计分散在流固介质中的聚合物混合物的建设性框架。注意到了在空间异质聚合物产品的预期制造中的应用。还提出了一些未来研究的方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号