首页> 外文期刊>Applied Mathematical Modelling >An improved seasonal rolling grey forecasting model using a cycle truncation accumulated generating operation for traffic flow
【24h】

An improved seasonal rolling grey forecasting model using a cycle truncation accumulated generating operation for traffic flow

机译:改进的季节性滚动灰色预测模型,利用周期截断累积生成操作进行交通流

获取原文
获取原文并翻译 | 示例

摘要

Accurate real-time prediction of urban traffic flows is one of the most important problems in traffic management and control optimization research. Short-term traffic flow has complex stochastic and nonlinear characteristics, and it shows a similar seasonality within intraday and weekly trends. Based on these properties, we propose an improved binding cycle truncation accumulated generating operation seasonal grey rolling forecasting model. In the new model, the traffic flow sequence of seasonal fluctuation is converted to a flat sequence using the cycle truncation accumulated generating operation. Then, grey modeling of the cycle truncation accumulated generating operation sequence weakens the stochastic disturbances and highlights the intrinsic grey exponential law after the sequence is accumulated. Finally, rolling forecasts of the limited data reflect the new information priority and timeliness of the grey prediction. Two numerical traffic flow examples from China and Canada, including four groups at different time intervals (1 h, 15 min, 10 min, and 5 min), are used to verify the performance of the new model under different traffic flow conditions. The prediction results show that the model has good adaptability and stability and can effectively predict the seasonal variations in traffic flow. In 15 or 10 min traffic flow forecasts, the proposed model shows better performance than the autoregressive moving average model, wavelet neural network model and seasonal discrete grey forecasting model.
机译:准确的城市交通流量实时预测是交通管理与控制优化研究中最重要的问题之一。短期交通流量具有复杂的随机和非线性特征,并且在日内和周内趋势中显示出相似的季节性。基于这些性质,我们提出了一种改进的绑定周期截断累积生成操作季节性灰度滚动预测模型。在新模型中,使用周期截断累积生成操作将季节性波动的交通流序列转换为平坦序列。然后,对循环截断累积的生成操作序列进行灰色建模可以减弱随机干扰,并在累积该序列后突出固有的灰色指数规律。最后,有限数据的滚动预测反映了新的信息优先级和灰色预测的及时性。来自中国和加拿大的两个数字交通流示例(包括四个组,分别在不同的时间间隔(1小时,15分钟,10分钟和5分钟))用于验证新模型在不同交通流条件下的性能。预测结果表明,该模型具有良好的适应性和稳定性,可以有效预测交通流量的季节变化。在15分钟或10分钟的交通流量预测中,所提出的模型表现出比自回归移动平均模型,小波神经网络模型和季节性离散灰色预测模型更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号