首页> 外文期刊>Applied Mathematical Modelling >A hybrid spares demand forecasting method dedicated to mining industry
【24h】

A hybrid spares demand forecasting method dedicated to mining industry

机译:采矿业专用的混合备件需求预测方法

获取原文
获取原文并翻译 | 示例

摘要

The paper addresses the problem of lumpy demand forecasting which is typical for spare parts. Several prediction methods are presented in the paper - traditional techniques based on time series and advanced methods which use artificial neural networks. The paper presents a new hybrid spares demand forecasting method dedicated to mining companies. The method combines information criteria, regression modeling and artificial neural networks. The paper also discusses simulation research related to efficiency assessment of the chosen variable selection methods and its application in the newly developed forecasting method. The assessment of this method is conducted by a comparison with traditional methods and is based on selected forecast errors.
机译:本文解决了零备件需求预测的问题,这通常是备件的。本文提出了几种预测方法-基于时间序列的传统技术和使用人工神经网络的高级方法。本文提出了一种专门针对矿业公司的新型混合备件需求预测方法。该方法结合了信息标准,回归建模和人工神经网络。本文还讨论了与所选变量选择方法的效率评估相关的仿真研究及其在新开发的预测方法中的应用。通过与传统方法进行比较并基于选定的预测误差对这种方法进行评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号