首页> 外文期刊>Applied Mathematical Modelling >Approximate adaptive uniformization of continuous-time Markov chains
【24h】

Approximate adaptive uniformization of continuous-time Markov chains

机译:连续时间马尔可夫链的近似自适应均匀化

获取原文
获取原文并翻译 | 示例

摘要

We consider the approximation of transient (time dependent) probability distributions of discrete-state continuous-time Markov chains on large, possibly infinite state spaces. A framework for approximate adaptive uniformization is provided, which generalizes the well-known uniformization technique and many of its variants. Based on a birth process and a discrete-time Markov chain a computationally tractable approximating process/model is constructed. We investigate the theoretical properties of this process and prove that it yields computable lower and upper bounds for the desired transient probabilities. Finally, we discuss different specific ways of performing approximate adaptive uniformization and analyze the corresponding approximation errors. The application is illustrated by an example of a stochastic epidemic model.
机译:我们考虑在可能较大的无限状态空间上的离散状态连续时间马尔可夫链的瞬态(与时间相关)概率分布的近似值。提供了用于近似自适应均匀化的框架,该框架概括了众所周知的均匀化技术及其许多变体。基于出生过程和离散时间马尔可夫链,构建了可计算处理的近似过程/模型。我们研究了此过程的理论特性,并证明了该过程可得出所需瞬态概率的可计算下限和上限。最后,我们讨论了执行近似自适应均匀化的不同特定方法,并分析了相应的近似误差。随机流行模型的一个例子说明了该应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号