首页> 外文期刊>Applied Mathematical Modelling >Upper bound limit analysis using the weak form quadrature element method
【24h】

Upper bound limit analysis using the weak form quadrature element method

机译:使用弱形式正交元素法的上限分析

获取原文
获取原文并翻译 | 示例

摘要

HighlightsThe weak form quadrature element method is applied for upper bound limit analysis.Gauss–Lobatto quadrature is employed to numerically integrate the integrals in the dual formulations.The efficiency of the existing numerical limit algorithms is improved.The well-known volumetric locking occurred for incompressible materials is overcome.AbstractLimit analysis is a useful tool for design and safety assessment of structures in civil and geotechnical engineering. In the present study, a newly developed high order algorithm-the weak form quadrature element method is reformulated for upper bound limit analysis. The dual formulations of the kinematic theorem are employed with the nodal stresses chosen as the optimization variables. The weak form equilibrium constraint is numerically integrated by Lobatto integration and then the nodal derivatives are approximated by differential quadrature analogue. The resulting optimization problem is formulated as a standard second-order cone programming problem and solved by the optimization toolbox Mosek. This paper aims to improve the efficiency of the existing numerical limit algorithms especially for problems with singularities such as cracked structures and to overcome the well-known volumetric locking occurred for incompressible materials. Some numerical tests are given to show the accuracy and efficiency of the present method.
机译: 突出显示 将弱形式正交元素方法应用于上限分析。 使用Gauss-Lobatto正交将对数公式积分。 / ce:para> 提高了现有数值限制算法的效率。 解决了不可压缩材料发生的众所周知的体积锁定问题。 < / ce:abstract-sec> 摘要 极限分析是用于土木和岩土工程中结构设计和安全评估的有用工具。在本研究中,重新制定了一种新开发的高阶算法-弱形式正交元素法用于上限分析。使用运动学定理的对偶公式,并选择节点应力作为优化变量。通过Lobatto积分对弱形式的平衡约束进行数值积分,然后通过微分正交模拟对节点导数进行逼近。产生的优化问题被公式化为标准的二阶锥规划问题,并由优化工具箱Mosek解决。本文旨在提高现有数值限制算法的效率,尤其是对于诸如裂纹结构之类的奇异问题,并克服众所周知的不可压缩材料发生的体积锁定。进行了一些数值测试,证明了该方法的准确性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号