首页> 外文期刊>Applied Mathematical Modelling >Design of normalized fractional adaptive algorithms for parameter estimation of control autoregressive autoregressive systems
【24h】

Design of normalized fractional adaptive algorithms for parameter estimation of control autoregressive autoregressive systems

机译:控制自回归自回归系统参数估计的归一化分数自适应算法设计

获取原文
获取原文并翻译 | 示例

摘要

HighlightsFractional adaptive algorithms are designed for parameter estimation of CARAR systems.Algorithms remain convergent for all noise and fractional order variations.Accuracy of proposed fractional strategies is better than for standard methods.Proposed algorithms can be exploited to solve complex and stiff control problems.Proposed normalized fractional algorithms have comparable computational requirements.AbstractIn this paper, strength of fractional adaptive signal processing is exploited for parameter identification of control autoregressive autoregressive (CARAR) systems using normalized version of fractional least mean square (FLMS) and its recently introduced modification of type 1 and 2. The adaptation performance of the proposed normalized FLMS methods is compared with standard counterparts for CARAR identification model by taking different noise levels as well as fractional orders. The results of the statistical analyses are used to validate the consistency of the proposed normalized fractional adaptive methodologies in terms of convergence, accuracy and robustness. The reliability and effectiveness of the design schemes is further validated through consistently approaching the desired identification parameters based on performance metrics of mean square error, variance account for and Nash–Sutcliffe efficiency.
机译: 突出显示 分数自适应算法设计用于CARAR系统的参数估计。 算法对于所有噪声和分数阶变化均保持收敛。 建议的细分策略的准确性比标准方法更好。 建议的归一化分数算法具有可比的计算要求。 摘要 本文将分数自适应信号处理的优势用于使用分数最小均方(FLMS)的规范化版本及其最近引入的类型1和2的修改形式的控制自回归自回归(CARAR)系统的参数识别。拟议范数的自适应性能通过采用不同的噪声水平和分数阶次,将已简化的FLMS方法与用于CARAR识别模型的标准方法进行比较。统计分析的结果用于在收敛性,准确性和鲁棒性方面验证所提出的归一化分数自适应方法的一致性。通过根据均方误差,方差占和Nash-Sutcliffe效率的性能指标一致地接近所需的识别参数,进一步验证了设计方案的可靠性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号