首页> 外文期刊>Applied Linguistics >Improving Data Analysis in Second Language Acquisition by Utilizing Modern Developments in Applied Statistics
【24h】

Improving Data Analysis in Second Language Acquisition by Utilizing Modern Developments in Applied Statistics

机译:利用应用统计的现代发展改进第二语言习得中的数据分析

获取原文
获取原文并翻译 | 示例

摘要

In this article we introduce language acquisition researchers to two broad areas of applied statistics that can improve the way data are analyzed. First we argue that visual summaries of information are as vital as numerical ones, and suggest ways to improve them. Specifically, we recommend choosing boxplots over barplots and adding locally weighted smooth lines (Loess lines) to scatterplots. Second, we introduce the reader to robust statistics, a tool that can provide a way to use the power of parametric statistics without having to rely on the assumption of a normal distribution; robust statistics incorporate advances made in applied statistics in the last 40 years. Such types of analyses have only recently become feasible for the non-statistician practitioner as the methods are computer-intensive. We acquaint the reader with trimmed means and bootstrapping, procedures from the robust statistics arsenal which are used to make data more robust to deviations from normality. We show examples of how analyses can change when robust statistics are used. Robust statistics have been shown to be nearly as powerful and accurate as parametric statistics when data are normally distributed, and many times more powerful and accurate when data are non-normal.
机译:在本文中,我们向语言习得研究人员介绍了两个广泛的应用统计领域,可以改善数据分析的方式。首先,我们认为视觉的信息摘要与数字的摘要一样重要,并提出了改进它们的方法。具体来说,我们建议选择条形图而不是条形图,并在散点图上添加局部加权的平滑线(黄土线)。其次,我们向读者介绍健壮的统计数据,该工具可以提供一种使用参数统计数据功能的方法,而不必依赖于正态分布的假设。强大的统计数据融合了过去40年在应用统计数据方面取得的进步。此类分析直到最近才对非统计学家从业人员可行,因为这些方法是计算机密集型的。我们向读者介绍了一些精简的方法和自举方法,这些方法均来自可靠的统计武库,用于使数据对偏离正态性的数据更可靠。我们展示了使用稳健统计数据时分析如何变化的示例。数据显示为正态分布时,稳健的统计数据几乎与参数统计信息一样强大和准确,而数据为非正态数据时,强大的统计性能和准确度要高很多倍。

著录项

  • 来源
    《Applied Linguistics》 |2010年第3期|p.368-390|共23页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号