首页> 外文期刊>Applied Intelligence >The incremental learning algorithm with support vector machine based on hyperplane-distance
【24h】

The incremental learning algorithm with support vector machine based on hyperplane-distance

机译:基于超平面距离的支持向量机增量学习算法

获取原文
获取原文并翻译 | 示例

摘要

This paper proves the problem of losing incremental samples’ information of the present SVM incremental learning algorithm from both theoretic and experimental aspects, and proposes a new incremental learning algorithm with support vector machine based on hyperplane-distance. According to the geometric character of support vector, the algorithm uses Hyperplane-Distance to extract the samples, selects samples which are most likely to become support vector to form the vector set of edge, and conducts the support vector machine training on the vector set. This method reduces the number of training samples and effectively improves training speed of incremental learning. The results of experiment performed on Chinese webpage classification show that this algorithm can reduce the number of training samples effectively and accumulate historical information. The HD-SVM algorithm has higher training speed and better precision of classification.
机译:本文从理论和实验两个方面证明了目前支持向量机增量学习算法丢失增量样本信息的问题,并提出了一种基于超平面距离的支持向量机增量学习算法。该算法根据支持向量的几何特征,利用超平面距离提取样本,选择最有可能成为支持向量的样本形成边缘向量集,并对向量集进行支持向量机训练。该方法减少了训练样本的数量,有效提高了增量学习的训练速度。对中文网页分类的实验结果表明,该算法可以有效减少训练样本的数量,积累历史信息。 HD-SVM算法具有更高的训练速度和更好的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号