首页> 外文OA文献 >Incremental learning algorithm based on support vector machine with Mahalanobis distance (ISVMM) for intrusion prevention
【2h】

Incremental learning algorithm based on support vector machine with Mahalanobis distance (ISVMM) for intrusion prevention

机译:基于支持向量机和mahalanobis距离(IsVmm)的增量学习算法在入侵防御中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we propose a new classifier called an incremental learning algorithm based on support vector machine with Mahalanobis distance (ISVMM). Prediction of the incoming data type by supervised learning of support vector machine (SVM), reducing the step of calculation and complexity of the algorithm by finding a support set, error set and remaining set, providing of hard and soft decisions, saving the time for repeatedly training the datasets by applying the incremental learning, a new approach for building an ellipsoidal kernel for multidimensional data instead of a sphere kernel by using Mahalanobis distance, and the concept of handling the covariance matrix from dividing by zero are various features of this new algorithm. To evaluate the classification performance of the algorithm, it was applied on intrusion prevention by employing the data from the third international knowledge discovery and data mining tools competition (KDDcup'99). According to the experimental results, ISVMM can predict well on all of the 41 features of incoming datasets without even reducing the enlarged dimensions and it can compete with the similar algorithm which uses a Euclidean measurement at the kernel distance.
机译:在本文中,我们提出了一种新的分类器,称为基于马氏距离(ISVMM)的支持向量机的增量学习算法。通过支持向量机(SVM)的监督学习来预测输入数据类型,通过查找支持集,错误集和剩余集,提供硬性和软性决策,从而节省了计算时间,从而减少了计算步骤和算法复杂性通过使用增量学习反复训练数据集,使用Mahalanobis距离构建用于多维数据的椭圆核而不是球核的新方法以及处理被零除的协方差矩阵的概念是此新算法的各种功能。为了评估该算法的分类性能,它通过利用第三次国际知识发现和数据挖掘工具竞赛(KDDcup'99)的数据,将其应用于入侵防御。根据实验结果,ISVMM可以很好地预测传入数据集的所有41个特征,而无需减小扩展维,并且可以与在核距离处使用欧几里得度量的类似算法竞争。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号