首页> 外文期刊>Applied Energy >Two-scale model for quantifying the effects of laminar and turbulent mixing on algal growth in loop photobioreactors
【24h】

Two-scale model for quantifying the effects of laminar and turbulent mixing on algal growth in loop photobioreactors

机译:用于量化层流和湍流混合对回路光生物反应器中藻类生长影响的两尺度模型

获取原文
获取原文并翻译 | 示例

摘要

This paper quantifies the mixing effects on algal growth in loop photobioreactors using two-scale low-dimensional models derived through spatial averaging of the Convection-Diffusion-Reaction equation using Liapunov-Schmidt technique of the classical bifurcation theory. The local mixing in the reactor is captured in terms of the mixing time and the difference between the mixing-cup and the spatially averaged concentrations of the algae, which are representatives of the convection scale in the fluid phase and the reaction scale at the algal surface, respectively. We solve coupled unsteady-state low-dimensional partial differential equations (PDEs) to simulate the temporal dynamics of the algae (Chlorella vulgaris), carbon dioxide and oxygen along the reactor in laminar and turbulent mixing regimes. Analytical solutions are derived for the unsteady and pseudo-steady state cases in the turbulent regime. We show that while laminar mixing results in significant scale separation between the convection and reaction scales, turbulent mixing - propelled by the turbulent diffusivity - eliminates all scale separation and mass transfer limitations in the photobioreactor and maximizes algal growth. Increasing Reynolds number (Re) increases the dimensionless mixing time (and thus, the scale separation) in the laminar regime but has negligible effect on turbulent mixing. Thus, the system transitions from the mixing-limited asymptote in the laminar regime to the reaction-limited asymptote in the turbulent regime. For maximum algal growth per unit energy cost, we recommend operating loop photobioreactors at a low Re (>2300) in the turbulent flow regime so as to generate turbulent mixing for rapid mass transfer of the growth substrates and the algae between the convection (fluid) and the reaction (solid) phases, at optimal pressure drops. Our two-scale model would be an important design tool for quantifying mixing effects while scaling up photobioreactors. (C) 2015 Elsevier Ltd. All rights reserved.
机译:本文使用二维分叉模型,通过对流-扩散-反应方程的空间平均,采用经典分叉理论的Liapunov-Schmidt技术,通过对空间光生物反应器中藻类生长的混合效应进行量化。根据混合时间以及混合杯与藻类的空间平均浓度之间的差异来捕获反应器中的局部混合,它们代表了液相中的对流规模和藻类表面的反应规模。 , 分别。我们求解耦合的非稳态低维偏微分方程(PDE),以模拟层流和湍流混合条件下沿反应器的藻类(小球藻),二氧化碳和氧气的时间动态。对于湍流状态下的非稳态和拟稳态情况,得出了解析解。我们显示,虽然层流混合导致对流和反应尺度之间的显着尺度分离,但湍流混合(由湍流扩散率推动)消除了光生物反应器中的所有尺度分离和传质限制,并使藻类生长最大化。雷诺数(Re)的增加会增加层流状态下无量纲的混合时间(因此会导致水垢分离),但对湍流混合的影响可忽略不计。因此,系统从层流状态下的混合限制渐近线过渡到湍流状态下的反应限制渐近线。为了使单位能量成本中的藻类生长最大化,我们建议在湍流状态下以低Re(> 2300)运行循环光生物反应器,以产生湍流混合,以快速生长生长基质和藻类之间的对流(流体)以及在最佳压降下的反应(固相)阶段。我们的两尺度模型将是量化混合效应同时放大光生物反应器的重要设计工具。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Applied Energy》 |2017年第2期|973-984|共12页
  • 作者单位

    Indian Inst Technol Kharagpur, Dept Chem Engn, Kharagpur 721302, W Bengal, India;

    Indian Inst Technol Kharagpur, Dept Chem Engn, Kharagpur 721302, W Bengal, India|Indian Inst Technol Kharagpur, Sch Energy Sci & Engn, Kharagpur 721302, W Bengal, India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Algae; Photobioreactors; Mixing; Reaction; Scale separation; Turbulent;

    机译:藻类;光生物反应器;混合;反应;水垢分离;湍流;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号