首页> 外文期刊>Applied Energy >Quantifying cell-to-cell variations of a parallel battery module for different pack configurations
【24h】

Quantifying cell-to-cell variations of a parallel battery module for different pack configurations

机译:量化不同包配置的并联电池模块的单元到单元格式

获取原文
获取原文并翻译 | 示例
           

摘要

Cell-to-cell variations can originate from manufacturing inconsistency or poor design of the battery pack/thermal management system. The potential impact of such variations may limit the energy capacity of the pack, which for electric vehicle applications leads to reduced range, increased degradation along with state of health dispersion within a pack. The latter is known to reduce the accessible energy and the overcharging/discharging of some of the cells within a system, which may cause safety concerns. This study investigates the short-term impact of such effects, which is highly important for designing of an energy storage system. A generic pack model comprising individual cell models is developed in Simscape and validated for a 1s-15p module architecture. The results highlight that a number of cells and interconnection resistance values between the cells are the dominant factors for cell-to-cell variation. A Z shape module architecture show a significant advantage over a ladder configuration due to the reduced impact of interconnection resistance on differential current flow within the module. Current imbalance is significantly higher for a ladder system and its magnitude is not dependent on the module current. Capacity variation does not have a significant impact on the system. By increasing the capacity variation from 9% to 40% the current inhomogeneity increases from 4% to 13%, whilst 25% resistance variation leads to 22% current dispersion. Further, a linear relationship is observed between the current inhomogeneity and thermal gradient (Delta T). A 30 degrees C Delta T leads to 24% current variation within the module.
机译:电池到细胞变化可以源自制造电池组/热管理系统的不一致或差。这种变化的潜在影响可以限制包装的能量,这对于电动车辆应用导致减小的范围,增加了劣化以及包装内的健康分散状态。已知后者降低了系统内的一些细胞的可接近能量和过充电/放电,这可能导致安全问题。本研究调查了这种影响的短期影响,这对于设计能量存储系统非常重要。在Simscape中开发了包含各个单元模型的通用包模型,并验证了1S-15P模块架构。结果突出显示细胞之间的多个细胞和互连电阻值是细胞对细胞变异的主要因素。由于互连电阻对模块内的差电流流动的影响降低,Z形模块架构在梯形图中显示出显着的优势。梯形系统的当前不平衡显着高,其幅度不依赖于模块电流。容量变异对系统没有显着影响。通过增加9%至40%的容量变化,目前的不均匀性从4%增加到13%,而25%的电阻变化导致电流分散体22%。此外,在电流不均匀性和热梯度(ΔT)之间观察到线性关系。 30摄氏度导致模块内的24%电流变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号