首页> 外文期刊>Applied Energy >A novel mobility-based approach to derive urban-scale building occupant profiles and analyze impacts on building energy consumption
【24h】

A novel mobility-based approach to derive urban-scale building occupant profiles and analyze impacts on building energy consumption

机译:一种基于新的基于流动性的方法来推导城市规模建设乘员概况并分析对建筑能耗的影响

获取原文
获取原文并翻译 | 示例

摘要

In the US, people spend more than 90% of their time in buildings, which contributes to more than 70% of overall electricity usage in the country. Occupant behavior is becoming a leading factor impacting energy consumption in buildings. Existing occupant-behavior studies are often limited to a single building and individual behavior, such as presence or interactions in confined spaces. Moreover, studies modeling occupant behavior at the building or community level are limited. With the development of the Internet of Things, mobile positioning data are available through social media and location-based service applications. The goal of this study is to analyze the impacts of more representative occupancy profiles, derived from high resolution urban scale mobile position data, on building energy consumption. . A pilot study was conducted on more than 900 buildings in downtown San Antonio, Texas, with billions of mobile positioning data. We then compared these profiles with the existing Department of Energy prototype models and quantified the differences using a statistical method. On average, the differences in occupancy rates between the ones derived from the empirical profile and the ones from the Department of Energy reference ranged from similar to 30% to 70%. The realistic derived profiles are then simulated in the CityBES. The results show that the predicted cooling energy demand is reduced by up to 40% while the heating energy demand is reduced by up to 60%. This study, therefore, advances knowledge of urban planning as well as urban-scale energy modeling and optimization.
机译:在美国,人们花费超过90%的建筑时间,这有助于该国总电力使用的70%以上。占用行为正在成为影响建筑物能源消耗的主要因素。现有的乘员行为研究通常限于单个建筑物和个人行为,例如受限空间中的存在或相互作用。此外,研究建筑物或社区层面的占用行为的研究是有限的。随着物联网的发展,通过社交媒体和基于位置的服务应用程序可获得移动定位数据。本研究的目标是分析更多代表性占用概况的影响,从高分辨率城市规模移动位置数据进行建立能源消耗。 。在德克萨斯州圣安东尼奥市中心900多座建筑物上进行了试点研究,其中数十亿个移动定位数据。然后,我们将这些简档与现有的能量原型模型进行比较,并使用统计方法量化差异。平均而言,从经验配置文件的占用率与能量参考部的差异差异范围与30%达到70%。然后在CityBES中模拟真实的派生简档。结果表明,预测的冷却能源需求减少了高达40%,而加热能量需求降低至多60%。因此,这项研究进展了城市规划知识以及城市规模能源建模和优化。

著录项

  • 来源
    《Applied Energy》 |2020年第15期|115656.1-115656.18|共18页
  • 作者单位

    Univ Texas San Antonio Dept Management Sci & Stat One UTSA Circle San Antonio TX 78249 USA;

    Syracuse Univ Dept Mech & Aerosp Engn 223 Link Hall Syracuse NY 13244 USA;

    Northeastern Univ Dept Civil & Environm Engn 360 Huntington Ave Boston MA 02115 USA;

    Syracuse Univ Dept Mech & Aerosp Engn 223 Link Hall Syracuse NY 13244 USA;

    Tsinghua Univ Sch Architecture Bldg Energy Res Ctr Beijing 100084 Peoples R China;

    Beijing Univ Civil Engn & Architecture Sch Environm & Energy Engn Beijing 100044 Peoples R China;

    Syracuse Univ Dept Mech & Aerosp Engn 223 Link Hall Syracuse NY 13244 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Occupancy profile; Urban mobility; Global positioning system; Urban-scale building energy modeling;

    机译:占用概况;城市移动;全球定位系统;城市规模建筑能源建模;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号