首页> 外文期刊>Applied computational intelligence and soft computing >A SVR Learning Based Sensor Placement Approach for Nonlinear Spatially Distributed Systems
【24h】

A SVR Learning Based Sensor Placement Approach for Nonlinear Spatially Distributed Systems

机译:非线性空间分布式系统中基于SVR学习的传感器放置方法

获取原文
获取原文并翻译 | 示例

摘要

Many industrial processes are inherently distributed in space and time and are called spatially distributed dynamical systems (SDDSs). Sensor placement affects capturing the spatial distribution and then becomes crucial issue to model or control an SDDS. In this study, a new data-driven based sensor placement method is developed. SVR algorithm is innovatively used to extract the characteristics of spatial distribution from a spatiotemporal data set. The support vectors learned by SVR represent the crucial spatial data structure in the spatiotemporal data set, which can be employed to determine optimal sensor location and sensor number. A systematic sensor placement design scheme in three steps (data collection, SVR learning, and sensor locating) is developed for an easy implementation. Finally, effectiveness of the proposed sensor placement scheme is validated on two spatiotemporal 3D fuzzy controlled spatially distributed systems.
机译:许多工业过程固有地在空间和时间上分布,因此被称为空间分布动力系统(SDDS)。传感器的放置会影响捕获空间分布,然后成为建模或控制SDDS的关键问题。在这项研究中,开发了一种新的基于数据驱动的传感器放置方法。 SVR算法被创新地用于从时空数据集中提取空间分布的特征。 SVR学习的支持向量表示时空数据集中的关键空间数据结构,可用于确定最佳传感器位置和传感器数量。开发了一个分三步(数据收集,SVR学习和传感器定位)的系统的传感器放置设计方案,以便于实施。最后,在两个时空3D模糊控制的空间分布系统上验证了所提出的传感器放置方案的有效性。

著录项

  • 来源
  • 作者单位

    Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics and Automation, Shanghai University, Shanghai 200072, China;

    Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics and Automation, Shanghai University, Shanghai 200072, China;

    Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics and Automation, Shanghai University, Shanghai 200072, China;

    Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics and Automation, Shanghai University, Shanghai 200072, China;

    Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号