首页> 外文期刊>Applied Computational Electromagnetics Society journal >3D Diagonalization and Supplementation of Electrostatic Field Equations in Fully Anisotropic and Inhomogeneous Media Proof of Existence and Consistency
【24h】

3D Diagonalization and Supplementation of Electrostatic Field Equations in Fully Anisotropic and Inhomogeneous Media Proof of Existence and Consistency

机译:3D对角化和静电场方程在完全各向异性和不均匀介质存在的静电场方程和稠度证据

获取原文
获取原文并翻译 | 示例

摘要

Consider Maxwell's homogeneous curl equation del x E = 0 for the electric field vector E and the inhomogeneous divergence equation del . D = rho for the dielectric displacement vector D and the charge density function rho in the static limit. Assume an (x, y, z)-Cartesian coordinate system. Consider the constitutive equation D = epsilon E, with the 3 x 3 position-dependent positive-definite permittivity matrix epsilon(x, y, z) modeling fully anisotropic and inhomogeneous dielectric media. This paper proves that del x E = 0 and del . D = rho along with D = epsilon E are diagonalizable with respect to the arbitrarily chosen z-axis leading to the D-c-form. The existence of an associated supplementary equation, the S-c-form, has also been demonstrated. Finally, it is shown that the constructed (D-c, S-c)-forms are sharply equivalent with the originating set of equations del x E = 0, del . D = rho, and D = epsilon E, and, thus, internally consistent. The proof scheme is relative in the sense that its validity hinges on the consistency of Maxwell's equations in the static limit and the material realizability conditions.
机译:考虑Maxwell的均匀卷曲方程Del X E = 0对于电场向量E和非均匀分歧方程式Del。 D =介电位移载体D的RHO和静态极限中的电荷密度函数ROO。假设(x,y,z)-cartesian坐标系。考虑组成型等式d = epsilon e,用3×3位依赖性阳性定向介电常数矩阵εε(x,y,z)建模完全各向异性和非均匀介电介质。本文证明了Del X E = 0和Del。 D = ROO与D = epsilon E相对于通向D-C形式的任意选择的Z轴是对角线的。还证明了相关的补充方程,S-C形式的存在。最后,示出了构造的(D-C,S-C)-Forms与始发的等式集Del X E = 0,Del急剧等效。 d = rho,D = epsilon e,因此内部一致。证明方案是相对的,即其有效性铰接在静态极限中麦克斯韦方程的一致性以及材料可实现条件的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号