首页> 外文期刊>Applied Computational Electromagnetics Society journal >3D Diagonalization and Supplementation of Electrostatic Field Equations in Fully Anisotropic and Inhomogeneous Media Proof of Existence and Consistency
【24h】

3D Diagonalization and Supplementation of Electrostatic Field Equations in Fully Anisotropic and Inhomogeneous Media Proof of Existence and Consistency

机译:完全各向异性和非均匀介质存在性和一致性的3D对角化和静电场方程的补充

获取原文
获取原文并翻译 | 示例

摘要

Consider Maxwell's homogeneous curl equation del x E = 0 for the electric field vector E and the inhomogeneous divergence equation del . D = rho for the dielectric displacement vector D and the charge density function rho in the static limit. Assume an (x, y, z)-Cartesian coordinate system. Consider the constitutive equation D = epsilon E, with the 3 x 3 position-dependent positive-definite permittivity matrix epsilon(x, y, z) modeling fully anisotropic and inhomogeneous dielectric media. This paper proves that del x E = 0 and del . D = rho along with D = epsilon E are diagonalizable with respect to the arbitrarily chosen z-axis leading to the D-c-form. The existence of an associated supplementary equation, the S-c-form, has also been demonstrated. Finally, it is shown that the constructed (D-c, S-c)-forms are sharply equivalent with the originating set of equations del x E = 0, del . D = rho, and D = epsilon E, and, thus, internally consistent. The proof scheme is relative in the sense that its validity hinges on the consistency of Maxwell's equations in the static limit and the material realizability conditions.
机译:考虑电场矢量E和非均匀散度方程del的麦克斯韦齐次卷曲方程del x E = 0。对于介电位移矢量D,D = rho,在静态极限内的电荷密度函数rho。假设一个(x,y,z)-笛卡尔坐标系。考虑本构方程D = epsilon E,其中3 x 3位置相关的正定介电常数矩阵epsilon(x,y,z)建模完全各向异性和非均质的介电介质。本文证明了del x E = 0和del。 D = rho与D = epsilon E相对于导致D-c形式的任意选择的z轴可对角线化。还证明了相关的补充方程式S-c的存在。最后,表明构造的(D-c,S-c)形式与方程组的原始集合del x E = 0,del完全等效。 D = rho,D = epsilon E,因此内部一致。证明方案是相对的,其有效性取决于静态极限和材料可实现性条件下麦克斯韦方程组的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号