首页> 外文期刊>Applied Computational Electromagnetics Society journal >One-vs-One Multiclass Least Squares Support Vector Machines for Direction of Arrival Estimation
【24h】

One-vs-One Multiclass Least Squares Support Vector Machines for Direction of Arrival Estimation

机译:一对多多类最小二乘支持向量机的估计方向

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a multiclass, multilabel implementation of Least Squares Support Vector Machines (LS-SVM) for DOA estimation in a CDMA system. For any estimation or classification system the algorithm's capabilities and performance must be evaluated. This paper includes a vast ensemble of data supporting the machine learning based DOA estimation algorithm. Accurate performance characterization of the algorithm is required to justify the results and prove that multiclass machine learning methods can be successfully applied to wireless communication problems. Thel earning algorithm presented in this paper includes steps for generating statistics on the multiclass evaluation path. The error statistics provide a confidence level of the classification accuracy.
机译:本文提出了用于CDMA系统DOA估计的最小二乘支持向量机(LS-SVM)的多类,多标签实现。对于任何估计或分类系统,必须评估算法的功能和性能。本文包含大量数据,这些数据支持基于机器学习的DOA估计算法。需要对算法进行准确的性能表征以证明结果合理,并证明多类机器学习方法可以成功地应用于无线通信问题。本文提出的收益算法包括在多类评估路径上生成统计信息的步骤。误差统计信息提供了分类准确性的置信度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号