首页> 外文期刊>Applied Computational Electromagnetics Society journal >Investigating the Composite Step Biconjugate A-Orthogonal Residual Method for Non-Hermitian Dense Linear Systems in Electromagnetics
【24h】

Investigating the Composite Step Biconjugate A-Orthogonal Residual Method for Non-Hermitian Dense Linear Systems in Electromagnetics

机译:电磁学中非Hermitian密集线性系统的复合阶梯双共轭A正交残差方法研究

获取原文
获取原文并翻译 | 示例

摘要

An interesting stabilizing variant of the biconjugate A-orthogonal residual (BiCOR) method is investigated for solving dense complex non-Hermitian systems of linear equations arising from the Galerkin discretization of surface integral equations in electromagnetics. The novel variant is naturally based on and inspired by the composite step strategy employed for the composite step biconjugate gradient method from the point of view of pivot-breakdown treatment when the BiCOR method has erratic convergence behaviors. Besides reducing the number of spikes in the convergence history of the norm of the residuals to the greatest extent, the present composite step BiCOR method can provide some further practically desired smoothing behavior towards stabilizing the numerical performance of the BiCOR method in the case of irregular convergence.
机译:研究了双共轭A正交残差(BiCOR)方法的一个有趣的稳定变体,用于求解由电磁学中的表面积分方程的Galerkin离散化引起的线性方程的致密复杂非Hermitian线性方程组。当BiCOR方法具有不稳定的收敛行为时,从枢轴分解处理的角度来看,这种新颖的变体自然是基于复合步长双共轭梯度法所采用的复合步长策略并受到其启发。除了最大程度地减少残差范数的收敛历史中的尖峰数目外,本发明的复合步骤BiCOR方法还可以提供一些其他实际所需的平滑行为,以在不规则收敛的情况下稳定BiCOR方法的数值性能。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号