首页> 外文期刊>Applied Computational Electromagnetics Society journal >A 3-D Polynomial-Chaos FDTD Technique for Complex Inhomogeneous Media with Arbitrary Stochastically-Varying Index Gradients
【24h】

A 3-D Polynomial-Chaos FDTD Technique for Complex Inhomogeneous Media with Arbitrary Stochastically-Varying Index Gradients

机译:具有任意随机变化的索引梯度的复杂非均匀介质的3-D多项式-混沌FDTD技术

获取原文
获取原文并翻译 | 示例

摘要

An enhanced finite-difference time-domain algorithm featuring the polynomial chaos representation is introduced in this paper for problems with stochastic uncertainties. Focusing on the solution of the governing partial differential equations, the new 3-D method uses the Karhunen-Loeve expansion to effectively decorrelate random input parameters denoted by stochastic processes. So, the space dimension is seriously reduced and high accuracy levels are attained, even for media with abrupt and fully unknown statistical variations. These profits are verified via a detailed numerical study.
机译:针对随机不确定性问题,本文提出了一种基于多项式混沌表示的增强型时域有限差分算法。专注于控制偏微分方程的解,新的3-D方法使用Karhunen-Loeve展开来有效地去相关由随机过程表示的随机输入参数。因此,即使对于具有突然且完全未知的统计变化的介质,空间尺寸也会大大减小,并且可以达到较高的精度水平。通过详细的数值研究验证了这些利润。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号