首页> 外文期刊>Applied Artificial Intelligence >Near Real-time Map Building with Multi-class Image Set Labeling and Classification of Road Conditions Using Convolutional Neural Networks
【24h】

Near Real-time Map Building with Multi-class Image Set Labeling and Classification of Road Conditions Using Convolutional Neural Networks

机译:使用卷积神经网络靠近多级图像集标签和道路状况分类的实时地图建筑附近

获取原文
获取原文并翻译 | 示例

摘要

Road Weather Information Systems (RWIS) provide real-time weather information at point locations and are often used to produce road weather forecasts and provide input for pavement forecast models. Compared to the prevalant street cameras, however, RWIS are sometimes limited in availability. Thus, extraction of road conditions data by computer vision can provide a complementary observational data source if it can be done quickly and on large scales. In this paper, we leverage state-of-the-art convolutional neural networks (CNN) in labeling images taken by street and highway cameras located across North America. The final training set included 47,000 images labeled with five classes: dry, wet, snow/ice, poor, and offline. The experiments tested different configurations of six CNNs. The EfficientNet-B4 framework was found to be most suitable to this problem, achieving validation accuracy of 90.6%, although EfficientNet-B0 achieved an accuracy of 90.3% with half the execution time. The classified images were then used to construct a map showing real-time road conditions at various camera locations. The proposed approach is presented in three parts: i) application pipeline, ii) description of the deep learning frameworks, iii) the dataset labeling process and the classification metrics.
机译:道路天气信息系统(RWIS)在点位置提供实时天气信息,通常用于生产道路预测模型的道路天气预报并提供输入。然而,与普雷普通的街道相机相比,RWIS有时可用于可用性。因此,如果可以快速和大规模完成,通过计算机视觉提取道路状况数据可以提供互补的观察数据源。在本文中,我们利用最先进的卷积神经网络(CNN)标记由位于北美的街道和公路相机拍摄的标签。最终培训集包括47,000张图像,标有五类:干燥,潮湿,雪/冰,穷人和离线。实验测试了六个CNN的不同配置。发现有效的网络B4框架最适合该问题,实现验证精度为90.6%,尽管有效网络-B0实现了90.3%的准确度,具有一半的执行时间。然后使用分类的图像来构建示出各种相机位置的实时道路状况的地图。所提出的方法是分为三部分:i)应用管道,ii)描述深度学习框架,iii)数据集标签过程和分类度量。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2021年第11期|803-833|共31页
  • 作者单位

    Univ Winnipeg Dept Appl Comp Sci 515 Portage Ave Winnipeg MB R3B 2E9 Canada;

    Univ Winnipeg Dept Appl Comp Sci 515 Portage Ave Winnipeg MB R3B 2E9 Canada;

    Weatherlogics Inc Winnipeg MB Canada;

    Univ Winnipeg Dept Appl Comp Sci 515 Portage Ave Winnipeg MB R3B 2E9 Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号