首页> 外文期刊>Applied Artificial Intelligence >Contextual Bandit Approach-based Recommendation System for Personalized Web-based Services
【24h】

Contextual Bandit Approach-based Recommendation System for Personalized Web-based Services

机译:基于语调的基于Web的服务的方法 - 基于Birt方法的推荐系统

获取原文
获取原文并翻译 | 示例

摘要

In recent years, recommendation systems have started to gain significant attention and popularity. A recommendation system plays a significant role in various applications and services such as e-commerce, video streaming websites, etc. A critical task for a recommendation system is to model users' preferences so that it can attain the capability to suggest personalized items for each user. The personalized list suggested by a suitable recommendation system should contain items highly relevant to the user. However, many a times, the traditional recommendation systems do not have enough data about the user or its peers because the model faces the cold-start problem. This work compares the existing three MAB algorithms: LinUCB, Hybrid-LinUCB, and CoLin based on evaluating regret. These algorithms are first tested on the synthetic data and then used on the real-world datasets from different areas: Yahoo Front Page Today Module, Lastfm, and MovieLens20M. The experiment results show that CoLin outperforms Hybrid-LinUBC and LinUCB, reporting cumulated regret of 8.950 for LastFm and 60.34 for MovieLens20M and 34.10 for Yahoo FrontPage Today Module.
机译:近年来,推荐系统已经开始获得重大关注和人气。推荐系统在各种应用程序和服务中发挥着重要作用,例如电子商务,视频流式网站等。推荐系统的关键任务是为用户的偏好建模,以便它可以实现为每个的个性化项目建立个性化物品用户。合适的推荐系统建议的个性化列表应包含与用户高度相关的项目。然而,许多时候,传统推荐系统没有足够的数据数据或其对等体,因为模型面临冷启动问题。这项工作比较了现有的三种MAB算法:Linucb,Hybrid-Linux和Colin,基于评估遗憾。这些算法首先在合成数据上测试,然后在来自不同区域的实际数据集上使用:Yahoo Front Page今日模块,Lastfm和Movielens20M。实验结果表明,Colin优于Hybrid-Linubc和Linux,报告了Lastfm的8.950的累积遗憾,60.34为Movielens20M和34.10用于今天模块。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2021年第8期|489-504|共16页
  • 作者单位

    Jaypee Inst Informat Technol Dept Comp Sci & Engn & Informat Technol Noida India;

    Jaypee Inst Informat Technol Dept Comp Sci & Engn & Informat Technol Noida India;

    Jaypee Inst Informat Technol Dept Comp Sci & Engn & Informat Technol Noida India;

    Jaypee Inst Informat Technol Dept Comp Sci & Engn & Informat Technol Noida India;

    Jaypee Inst Informat Technol Dept Comp Sci & Engn & Informat Technol Noida India;

    Jaypee Inst Informat Technol Dept Comp Sci & Engn & Informat Technol Noida India|Natl Inst Technol Dept CSE Rourkela India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号