首页> 外文期刊>Applied Artificial Intelligence >Driver Fatigue Detection Using Viola Jones and Principal Component Analysis
【24h】

Driver Fatigue Detection Using Viola Jones and Principal Component Analysis

机译:使用Viola Jones和主成分分析的司机疲劳检测

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we have proposed a low-cost solution for driver fatigue detection based on micro-sleep patterns. Contrary to conventional methods, we acquired images by placing a camera on the extreme left side of the driver and proposed two algorithms that facilitate accurate face and eye detections, even when the driver is not facing the camera or driver's eyes are closed. The classification to find whether eye is closed or open is done on the right eye only using SVM and Adaboost. Based on eye states, micro-sleep patterns are determined and an alarm is triggered to warn the driver, when needed. In our dataset, we considered multiple subjects from both genders, having different appearances and under different lightning conditions. The proposed scheme gives 99.9% and 98.7% accurate results for face and eye detection, respectively. For all the subjects, the average accuracy of SVM and Adaboost is 96.5% and 95.4%, respectively.
机译:在本文中,我们提出了基于微睡眠模式的驱动疲劳检测的低成本解决方案。与传统方法相反,我们通过将相机放置在驾驶员的左侧并提出了两种促进精确的面部和眼睛检测的算法,即使当驾驶员不面对相机或驾驶员的眼睛关闭时,也提出了两种算法。查找眼睛是否关闭或打开的分类仅在右眼上使用SVM和Adaboost完成。基于眼睛状态,确定微睡眠模式并在需要时触发警报以警告驾驶员。在我们的数据集中,我们考虑了来自两种性别的多个科目,具有不同的外观以及在不同的闪电条件下。拟议方案分别为面部和眼睛检测分别提供99.9%和98.7%的准确结果。对于所有受试者,SVM和Adaboost的平均准确性分别为96.5%和95.4%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号