首页> 外文期刊>Applied Artificial Intelligence >A Comparative Study Of Ann For Predicting Nitrate Concentration In Groundwater Wells In The Southern Area Of Gaza Strip
【24h】

A Comparative Study Of Ann For Predicting Nitrate Concentration In Groundwater Wells In The Southern Area Of Gaza Strip

机译:Ann预测加沙地带南部地区地下水井硝酸盐浓度的比较研究

获取原文
获取原文并翻译 | 示例

摘要

The main source of water in the Gaza Strip is the shallow aquifer which is part of the coastal aquifer. The quality of the groundwater is extremely deteriorated in terms of nitrates and salinity. The Gaza Strip is mostly in catastrophic conditions that desire imperative and great efforts to improve the water situation on conditions of both quality and quantity. In this study, performance of two artificial networks was evaluated to determine which one would have more efficiency in predicting nitrate concentrations of groundwater wells used for desalination purpose in the southern area of Gaza Strip. Multiple layer perceptron (MLP) and radial basis function (RBF) neural networks are trained and developed with reference to seven important variables including pH, EC, TDS, hardness, calcium, magnesium, and abstraction rate. These variables are considered as inputs of the network. The data sets used in this study consist of six months and collected from 15 groundwater wells in Khan Younis and Rafah area. The network performance has been tested with different data sets and the results showed satisfactory performance. The prediction results of the MLP neural network were found to be better than RBF. Prediction results prove that neural network approach has good and wide applicability for modeling nitrate in the groundwater wells of Gaza Strip coastal aquifer. We hope that the established model will help in assisting the local authorities in developing plans and policies to improve the water quality in the Gaza Strip to acceptable levels.
机译:加沙地带的主要水源是浅层含水层,它是沿海含水层的一部分。就硝酸盐和盐度而言,地下水的质量极度恶化。加沙地带大多处于灾难性状况,需要在质量和数量条件下改善水状况的当务之急。在这项研究中,评估了两个人工网络的性能,以确定哪个网络在预测加沙地带南部地区用于脱盐目的的地下水井的硝酸盐浓度方面更有效率。参照7个重要变量(包括pH,EC,TDS,硬度,钙,镁和提取速率)对多层感知器(MLP)和径向基函数(RBF)神经网络进行了训练和开发。这些变量被视为网络的输入。本研究使用的数据集为期六个月,收集自Khan Younis和Rafah地区的15口地下水井。网络性能已使用不同的数据集进行了测试,结果表明性能令人满意。发现MLP神经网络的预测结果优于RBF。预测结果证明,神经网络方法对加沙地带沿海含水层地下水井中硝酸盐的模拟具有良好的适用性。我们希望,已建立的模式将有助于协助地方当局制定计划和政策,以将加沙地带的水质提高到可接受的水平。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2018年第10期|727-744|共18页
  • 作者单位

    Al Azhar Univ, Inst Water & Environment, Gaza Strip, Palestine;

    Al Azhar Univ, Fac Sci, Dept Chem, Gaza Strip, Palestine;

    Palestinian Author, Environm Qual Author, Gaza Strip, Palestine;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号