首页> 外文期刊>Applied Artificial Intelligence >A PRE-PROCESSING METHOD TO DEAL WITH MISSING VALUES BY INTEGRATING CLUSTERING AND REGRESSION TECHNIQUES
【24h】

A PRE-PROCESSING METHOD TO DEAL WITH MISSING VALUES BY INTEGRATING CLUSTERING AND REGRESSION TECHNIQUES

机译:集成聚类和回归技术来处理缺失值的预处理方法

获取原文
获取原文并翻译 | 示例

摘要

Data pre-processing is a critical task in the knowledge discovery process in order to ensure the quality of the data to be analyzed. One widely studied problem in data pre-processing is the handling of missing values with the aim to recover its original value. Based on numerous studies on missing values, it is shown that different methods are needed for different types of missing data. In this work, we propose a new method to deal with missing values in data sets where cluster properties exist among the data records. By integrating the clustering and regression techniques, the proposed method can predict the missing values with higher accuracy. To our best knowledge, this is the first work combining regression and clustering analysis to deal with the missing values problem. Through empirical evaluation, the proposed method was shown to perform better than other methods under different types of data sets.
机译:为了确保要分析的数据的质量,数据预处理是知识发现过程中的关键任务。数据预处理中一个被广泛研究的问题是对缺失值的处理,目的是恢复其原始值。基于对缺失值的大量研究,表明对于不同类型的缺失数据需要不同的方法。在这项工作中,我们提出了一种新方法,用于处理数据记录中存在簇属性的数据集中的缺失值。通过整合聚类和回归技术,该方法可以以更高的精度预测缺失值。据我们所知,这是结合回归分析和聚类分析处理缺失值问题的第一项工作。通过经验评估,在不同类型的数据集下,该方法的性能优于其他方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号