首页> 外文期刊>Applied Artificial Intelligence >UNSUPERVISED ANOMALY DETECTION IN LARGE DATABASES USING BAYESIAN NETWORKS
【24h】

UNSUPERVISED ANOMALY DETECTION IN LARGE DATABASES USING BAYESIAN NETWORKS

机译:使用贝叶斯网络对大型数据库进行非监督的异常检测

获取原文
获取原文并翻译 | 示例

摘要

Today, there has been a massive proliferation of huge databases storing valuable information. The opportunities of an effective use of these new data sources are enormous; however, the huge size and dimensionality of current large databases calls for new ideas to scale up current statistical and computational approaches. This article presents an application of artificial intelligence technology to the problem of automatic detection of candidate, anomalous records in a large database. We build our approach with three main goals in mind: 1) an effective detection of the records that are potentially anomalous; 2) a suitable selection of the subset of attributes that explains what makes a record anomalous; and 3) an efficient implementation that allows us to scale the approach to large databases. Our algorithm, called Bayesian network anomaly detector (BNAD), uses the joint probability density function (pdf) provided by a Bayesian network (BN) to achieve these goals. By using appropriate data structures, advanced caching techniques, the flexibility of Gaussian mixture models, and the efficiency of BNs to model joint pdfs, BNAD manages to efficiently learn a suitable BN from a large dataset. We test BNAD using synthetic and real databases, the latter from the fields of manufacturing and astronomy, obtaining encouraging results.
机译:如今,存储有价值信息的大型数据库已经大量增加。有效利用这些新数据源的机会是巨大的;但是,当前大型数据库的巨大规模和规模要求新的想法来扩大当前的统计和计算方法。本文介绍了人工智能技术在大型数据库中候选,异常记录的自动检测问题中的应用。我们在构建方法时要牢记三个主要目标:1)有效地检测可能异常的记录; 2)选择适当的属性子集,以解释导致记录异常的原因; 3)有效的实现方式,使我们能够将方法扩展到大型数据库。我们的算法称为贝叶斯网络异常检测器(BNAD),它使用贝叶斯网络(BN)提供的联合概率密度函数(pdf)来实现这些目标。通过使用适当的数据结构,先进的缓存技术,高斯混合模型的灵活性以及BN对联合pdf进行建模的效率,BNAD设法从大型数据集中有效学习合适的BN。我们使用合成数据库和真实数据库测试了BNAD,后者来自制造业和天文学领域,获得了令人鼓舞的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号