首页> 外文期刊>Applied Artificial Intelligence >LEARNING-BASED SCHEDULING OF FLEXIBLE MANUFACTURING SYSTEMS USING SUPPORT VECTOR MACHINES
【24h】

LEARNING-BASED SCHEDULING OF FLEXIBLE MANUFACTURING SYSTEMS USING SUPPORT VECTOR MACHINES

机译:基于支持向量机的柔性制造系统的基于学习的调度

获取原文
获取原文并翻译 | 示例

摘要

Dispatching rules are usually applied to dynamically schedule jobs in flexible manufacturing systems (FMSs). Despite their frequent use a significant drawback is that the performance level of the rule is dictated by the current state of the manufacturing system. Because no rule is better than any other for every system state, it would be highly desirable to know which rule is the most appropriate for each given condition. To achieve this goal we propose a scheduling approach using support vector machines (SVMs). By using this technique and by analyzing the earlier performance of the system, "scheduling knowledge" is obtained whereby the right dispatching rule at each particular moment can be determined. Simulation results show that the proposed approach leads to significant performance improvements over existing dispatching rules. In the same way it is also confirmed that SVMs perform better than other traditional machine learning algorithms as the inductive learning when applied to FMS scheduling problem, due to their better generalization capability.
机译:调度规则通常用于动态调度柔性制造系统(FMS)中的作业。尽管经常使用它们,一个明显的缺点是该规则的性能水平由制造系统的当前状态决定。因为对于每个系统状态,没有哪个规则比其他任何规则都要好,所以非常需要知道哪个规则最适合每个给定条件。为了实现此目标,我们提出了一种使用支持​​向量机(SVM)的调度方法。通过使用该技术并通过分析系统的早期性能,可以获得“调度知识”,从而可以确定每个特定时刻的正确调度规则。仿真结果表明,与现有的调度规则相比,该方法可显着提高性能。同样地,由于其更好的泛化能力,在应用于FMS调度问题时,也证实了SVM在归纳学习方面的表现优于其他传统的机器学习算法。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2010年第4期|P.194-209|共16页
  • 作者单位

    Escuela Tecnica Superior de Ingenieros Industriales,Universidad de Oviedo, Campus de Viesques, 33203 Gijon, Spain;

    Escuela Tecnica Superior de Ingenieros Industriales,Universidad de Oviedo, Gijon, Spain;

    Escuela Tecnica Superior de Ingenieros Industriales,Universidad de Oviedo, Gijon, Spain;

    Escuela Tecnica Superior de Ingenieros Industriales,Universidad de Oviedo, Gijon, Spain;

    Escuela Tecnica Superior de Ingenieros Industriales,Universidad de Oviedo, Gijon, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号