首页> 外文期刊>Applied Artificial Intelligence >GRADIENT-DESCENT BASED UNIT-SELECTION OPTIMIZATION ALGORITHM USED FOR CORPUS-BASED TEXT-TO-SPEECH SYNTHESIS
【24h】

GRADIENT-DESCENT BASED UNIT-SELECTION OPTIMIZATION ALGORITHM USED FOR CORPUS-BASED TEXT-TO-SPEECH SYNTHESIS

机译:基于语料库的语篇合成中基于梯度下降的单元选择优化算法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a gradient-descent based unit selection optimization algorithm for the optimization of unit-cost function weights and for improving the overall performance of the unit-selection algorithm, as used in a corpus-based text-to-speech synthesis system. Complex multidimensional and fuzzy-logic based unit-cost functions are used in the presented unit-selection algorithm. The weights used by these unit-cost functions are usually defined by heuristics or by listening tests. This can be very laborious and time consuming and does not necessarily result in an optimal performance of the unit-selection algorithm because of multidimensional unit-cost function space, within which different database candidates 'features are evaluated. Using heuristics or listening tests is also rather rigid, especially when working with several different databases or voices. It is especially difficult, within this scope, to set up those weights used in unit-cost functions in order to achieve overall optimal performance of the unit-selection algorithm. The proposed unit-selection optimization process consists of several steps. It is fully automatic, flexible, and fast enough to enable the development of a corpus-based text-to-speech (TTS) system that uses many different voices, without any heuristics or listening tests. This optimization process can also be helpful when evaluating the performances of unit-selection cost functions, and the performance of the unit-selection algorithm itself. The obtained results "suggest" those values that the unit-selection cost-function weights should have in order to obtain smoother transitions between selected unit candidates, after the unit-selection process. The obtained results also hint at the performance level that can be achieved with a given set of unit-cost function weights, and suggest what improvements can be gained when using those additional or changed unit-cost functions included within the unit-selection algorithm.
机译:本文提出了一种基于梯度下降的单元选择优化算法,用于优化单位成本函数权重并改善单元选择算法的整体性能,用于基于语料库的文本到语音合成系统。在提出的单位选择算法中,使用了基于多维和模糊逻辑的复杂单位成本函数。这些单位成本函数使用的权重通常是通过试探法或通过听力测试来定义的。这可能是非常费力和费时的,并且由于多维单位成本函数空间(在其中评估不同的数据库候选特征)而不一定会导致单元选择算法的最佳性能。使用启发式或听力测试也相当严格,尤其是在使用多个不同的数据库或语音时。在此范围内,特别困难的是设置那些在单位成本函数中使用的权重,以实现单位选择算法的总体最佳性能。建议的单元选择优化过程包括几个步骤。它是全自动,灵活和快速的,足以支持开发基于语料库的文本到语音(TTS)系统,该系统使用许多不同的声音,而无需进行任何试探或听力测试。当评估单位选择成本函数的性能以及单位选择算法本身的性能时,此优化过程也可能会有所帮助。在单元选择过程之后,获得的结果“建议”单元选择成本函数权重应具有的值,以便在所选单元候选之间获得更平滑的过渡。获得的结果还暗示了使用给定的一组单位成本函数权重可以实现的性能水平,并建议当使用单元选择算法中包含的那些附加或更改的单位成本函数时,可以获得哪些改进。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2011年第7期|p.635-668|共34页
  • 作者

    Matej Rojc; Zdravko Kacic;

  • 作者单位

    Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor,Slovenia;

    Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor,Slovenia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号