首页> 外文期刊>Applied Artificial Intelligence >MINING MARKETING KNOWLEDGE TO EXPLORE SOCIAL NETWORK SITES AND ONLINE PURCHASE BEHAVIORS
【24h】

MINING MARKETING KNOWLEDGE TO EXPLORE SOCIAL NETWORK SITES AND ONLINE PURCHASE BEHAVIORS

机译:挖掘市场知识,以探索社交网络站点和在线购买行为

获取原文
获取原文并翻译 | 示例

摘要

Social network sites (SNS), as web-based services, allow users to make open or semiopen profiles within the systems they are part of, to see lists of other people in the group, and to see the relationships of people within different groups. As the development of Internet applications has matured, developing and evaluating business models on social network sites has become a critical issue because these sites can be an innovative source for online marketing. Most studies in Taiwan on the behavior or marketing on SNS focus on either advertising or marketing, without picturing the overall scenario. Thus, this study investigates SNS as a research subject, and explores users' online and purchase behaviors in the cybercommunity. For this, the study uses the Apriori algorithm as an association rules approach, and cluster analysis for data mining, to categorize four kinds of online user behavior and generate purchase behavior patterns and rules. The results suggest that online users' SNS and purchase behavior knowledge are critical for the development of online business models.
机译:社交网站(SNS)作为基于Web的服务,允许用户在其所属系统中进行开放或半开放配置文件,以查看组中其他人员的列表,以及查看不同组中人员的关系。随着Internet应用程序的成熟,在社交网站上开发和评估业务模型已成为一个关键问题,因为这些网站可以成为在线营销的创新来源。台湾大多数关于SNS行为或营销的研究都集中在广告或营销上,而没有描绘出整体情况。因此,本研究将SNS作为研究主题进行调查,并探讨了用户在网络社区的在线和购买行为。为此,本研究使用Apriori算法作为关联规则方法,并使用聚类分析进行数据挖掘,以对四种在线用户行为进行分类,并生成购买行为模式和规则。结果表明,在线用户的SNS和购买行为知识对于在线业务模型的开发至关重要。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2015年第10期|697-732|共36页
  • 作者单位

    Tamkang Univ, Dept Management Sci, New Taipei City 251, Taiwan.;

    Tamkang Univ, Dept Management Sci, New Taipei City 251, Taiwan.;

    Tamkang Univ, Dept Management Sci, New Taipei City 251, Taiwan.;

    Tamkang Univ, Dept Management Sci, New Taipei City 251, Taiwan.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号