首页> 外文期刊>Applied Artificial Intelligence >Machine Learning Techniques Applied to Data Analysis and Anomaly Detection in ECG Signals
【24h】

Machine Learning Techniques Applied to Data Analysis and Anomaly Detection in ECG Signals

机译:机器学习技术在ECG信号中的数据分析和异常检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this article Tomasz Andrysiak presents the use of sparse representation of a signal based on overcomplete dictionaries of base functions and a QRS detection method using artificial neural network to detect anomalies in the analyzed ECG signals. Performance of the proposed method was tested by means of a widely available database of ECG signals, i.e., the MIT-BIH Arrhythmia Database, and the obtained experimental results confirmed its effectiveness for anomaly detection in the analyzed ECG signals. The current dynamic and intensive development of information technologies and more excellent methods of processing, analysis, and recognition of signals have enriched medicine with new quality techniques in diagnosis and therapy. At present, a special interest is put to noninvasive diagnostic methods for rapid and objective determination of vital signs and, in particular, automatic electrocardiogram performed outside medical facilities. The sparse representation of a signal was performed in an adaptive manner by means of the matching pursuit algorithm. In each step of the algorithm, there was implemented a linear signal decomposition of features belonging to the dictionary with redundancy. Two kinds of dictionaries were tested. The first type included elements that form the analytical base functions, and the second represented the essential components of the ECG signal searched with the use of the K-Singular Value Decomposition (K-SVD) algorithm. Recognition of the QRS was realized by means of a unidirectional, multidimensional neural network with backpropagation of an error. For this solution, tests were performed on a selection of appropriate neural network architectures and the impact of a particular activation function on the recognition results. Anomaly detection was realized with estimation of sparse representation parameters of the tested ECG signal within the field of the recognized QRS complex, and it was compared with the reference values. Performance of the proposed method was tested using a widely available database of ECG signals MIT-BIH Arrhythmia Database. The obtained experimental results confirmed the effectiveness of the proposed method of anomaly detection in the analyzed ECG signals.
机译:在本文中,Tomasz Andrysiak提出了基于基函数超完备字典的信号稀疏表示以及使用人工神经网络的QRS检测方法来检测分析的ECG信号中的异常的方法。通过广泛使用的ECG信号数据库即MIT-BIH心律失常数据库对所提出方法的性能进行了测试,获得的实验结果证实了其在分析的ECG信号中异常检测方面的有效性。当前信息技术的动态和密集发展以及更出色的信号处理,分析和识别方法,为医学提供了新的诊断和治疗技术。当前,特别关注用于快速和客观地确定生命体征的无创诊断方法,尤其是在医疗机构外进行的自动心电图检查。信号的稀疏表示是通过匹配追踪算法以自适应方式执行的。在算法的每个步骤中,都对带有字典的特征进行了具有冗余的线性信号分解。测试了两种字典。第一种类型包括构成分析基本函数的元素,第二种类型表示使用K奇异值分解(K-SVD)算法搜索的ECG信号的基本成分。 QRS的识别是通过具有错误的反向传播的单向多维神经网络来实现的。对于此解决方案,在选择合适的神经网络体系结构以及特定激活功能对识别结果的影响方面进行了测试。通过估计识别的QRS波群内的被测ECG信号的稀疏表示参数来实现异常检测,并将其与参考值进行比较。使用广泛可用的ECG信号MIT-BIH心律失常数据库对测试方法的性能进行了测试。获得的实验结果证实了所分析的心电信号中所提出的异常检测方法的有效性。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2016年第6期|610-634|共25页
  • 作者

    Andrysiak Tomasz;

  • 作者单位

    UTP Univ Sci & Technol, Inst Telecommun & Comp Sci, Al Prof S Kaliskiego 7, PL-85796 Bydgoszcz, Poland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号