首页> 外文期刊>Applied Artificial Intelligence >A Hybrid Color Image Quantization Algorithm Based on k-Means and Harmony Search Algorithms
【24h】

A Hybrid Color Image Quantization Algorithm Based on k-Means and Harmony Search Algorithms

机译:基于k均值和和声搜索算法的混合彩色图像量化算法

获取原文
获取原文并翻译 | 示例

摘要

Color quantization is one of the most important preprocessing stages in many applications in computer graphics and image processing. In this article, a new algorithm for color image quantization based on the harmony search (HS) algorithm is proposed. The proposed algorithm utilizes the clustering method, which is one of the most extensively applied methods to the color quantization problem. Two variants of the algorithm are examined. The first is based on a standalone HS algorithm, and the second is a hybrid algorithm of k-means (KM) and HS. The objective of the hybrid algorithm is to strengthen the local search process and balance the quantization quality and computational complexity. In the first stage, the high-resolution color space is initially condensed to a lower-dimensional color space by multilevel thresholding. In the second stage, the compressed colors are clustered to a palette using the hybrid KMHS to obtain final quantization results. The algorithm aims to design a postclustering quantization scheme at the color-space level instead of the pixel level. This significantly reduces the computational complexity while maintaining the quantization quality. Experimental results on some of the most commonly used test images in the quantization literature demonstrate that the proposed method is a powerful method, suggesting a higher degree of precision and robustness compared to existing algorithms.
机译:在计算机图形和图像处理的许多应用中,颜色量化是最重要的预处理阶段之一。本文提出了一种基于和声搜索(HS)算法的彩色图像量化新算法。所提出的算法利用了聚类方法,该方法是最广泛应用于颜色量化问题的方法之一。研究了该算法的两个变体。第一种基于独立的HS算法,第二种基于k均值(KM)和HS的混合算法。混合算法的目的是加强局部搜索过程,并平衡量化质量和计算复杂度。在第一阶段,首先通过多级阈值将高分辨率色彩空间浓缩为低维色彩空间。在第二阶段,使用混合KMHS将压缩后的颜色聚集成调色板,以获得最终的量化结果。该算法旨在在色彩空间级别而不是像素级别设计聚类后量化方案。这在保持量化质量的同时大大降低了计算复杂度。在量化文献中一些最常用的测试图像上的实验结果表明,该方法是一种功能强大的方法,与现有算法相比,它具有更高的精确度和鲁棒性。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2016年第6期|331-351|共21页
  • 作者单位

    Port Said Univ, Fac Engn, Dept Elect Engn, Port Fouad 42523, Port Said, Egypt;

    Port Said Univ, Fac Engn, Dept Elect Engn, Port Fouad 42523, Port Said, Egypt;

    Port Said Univ, Fac Engn, Dept Elect Engn, Port Fouad 42523, Port Said, Egypt;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号