首页> 外文期刊>Applied and Computational Harmonic Analysis >Large data and zero noise limits of graph-based semi-supervised learning algorithms
【24h】

Large data and zero noise limits of graph-based semi-supervised learning algorithms

机译:基于图形的半监督学习算法的大数据和零噪声限制

获取原文
获取原文并翻译 | 示例

摘要

Scalings in which the graph Laplacian approaches a differential operator in the large graph limit are used to develop understanding of a number of algorithms for semi-supervised learning; in particular, the probit algorithm, level set and kriging methods. Both optimization and Bayesian approaches are considered, based around a regularizing quadratic form found from an affine transformation of the Laplacian, raised to a possibly fractional, exponent. Conditions on the parameters defining this quadratic form are identified under which well-defined limiting continuum analogues of the optimization and Bayesian semi-supervised learning problems may be found, thereby shedding light on the design of algorithms in the large graph setting. The large graph limits of the optimization formulations are tackled through G-convergence, using the recently introduced TLp metric. The small labeling noise limits of the Bayesian formulations are also identified, and contrasted with pre-existing harmonic function approaches to the problem. (C) 2019 Elsevier Inc. All rights reserved.
机译:图拉普拉斯在大图限制中接近差分运算符的缩放,用于了解对半监督学习的许多算法的理解;特别地,概率算法,级别集和克里格化方法。考虑了优化和贝叶斯方法,基于从拉普拉斯的仿射转换中发现的正规规范的二次形式,提升到可能的分数,指数。确定了定义该二次形式的参数的条件,在该参数下,可以找到优化和贝叶斯半导体学习问题的定义限制连续体类似物,从而在大图设置中的算法设计上脱落。使用最近引入的TLP度量,通过G-acrollet来解决优化配方的大图限制。还识别了贝叶斯配方的小标记噪声限制,并与对问题的预先存在的谐波函数接近形成鲜明对比。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号