首页> 外文期刊>Applied and Computational Harmonic Analysis >Gaussian and sparse processes are limits of generalized Poisson processes
【24h】

Gaussian and sparse processes are limits of generalized Poisson processes

机译:高斯和稀疏过程是广义泊松过程的限制

获取原文
获取原文并翻译 | 示例

摘要

The theory of sparse stochastic processes offers a broad class of statistical models to study signals, far beyond the more classical class of Gaussian processes. In this framework, signals are represented as realizations of random processes that are solution of linear stochastic differential equations driven by Levy white noises. Among these processes, generalized Poisson processes based on compound-Poisson noises admit an interpretation as random L-splines with random knots and weights. We demonstrate that every generalized Levy process-from Gaussian to sparse-can be understood as the limit in law of a sequence of generalized Poisson processes. This enables a new conceptual understanding of sparse processes and suggests simple algorithms for the numerical generation of such objects. (C) 2018 Elsevier Inc. All rights reserved.
机译:稀疏随机过程理论提供了广泛的统计模型来研究信号,远远超出了更加古典的高斯过程。在该框架中,信号被表示为随机过程的实现,该过程是由征收白色噪声驱动的线性随机微分方程的解决方案。在这些过程中,基于复合泊松噪声的广义泊松过程承认用随机结和重量的随机L曲曲丁片进行解释。我们证明,每个广义征收过程 - 从高斯到稀疏 - 可以理解为一系列广义泊松过程的限制。这使得对稀疏过程的新概念理解能够,并提出了对这些对象的数值生成的简单算法。 (c)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号