首页> 外文期刊>Applied and Computational Harmonic Analysis >Quasi-tight framelets with high vanishing moments derived from arbitrary refinable functions
【24h】

Quasi-tight framelets with high vanishing moments derived from arbitrary refinable functions

机译:准紧的框架,具有高消失的瞬间,来自任意可再造成的功能

获取原文
获取原文并翻译 | 示例

摘要

Construction of multivariate tight framelets is known to be a challenging problem because it is linked to the difficult problem on sum of squares of multivariate polynomials in real algebraic geometry. Multivariate dual framelets with vanishing moments generalize tight framelets and are not easy to be constructed either, since their construction is related to syzygy modules and factorization of multivariate polynomials. On the other hand, compactly supported multivariate framelets with directionality or high vanishing moments are of interest and importance in both theory and applications. In this paper we introduce the notion of a quasi-tight framelet, which is a dual framelet, but behaves almost like a tight framelet. Let phi is an element of L-2 (R-d) be an arbitrary compactly supported real-valued M-refinable function with a general dilation matrix M and (phi) over cap (0) = 1 such that its underlying realvalued low-pass filter satisfies the basic sum rule. We first constructively prove by a step-by-step algorithm that we can always easily derive from the arbitrary M-refinable function phi a directional compactly supported real-valued quasi-tight M-framelet in L-2 (R-d) associated with a directional quasi-tight M-framelet filter bank, each of whose high-pass filters has one vanishing moment and only two nonzero coefficients. If in addition all the coefficients of its low-pass filter are nonnegative, then such a quasi-tight M-framelet becomes a directional tight M-framelet in L-2 (R-d). Furthermore, we show by a constructive algorithm that we can always derive from the arbitrary M-refinable function 0 a compactly supported quasi-tight M-framelet in L-2 (R-d) with the highest possible order of vanishing moments. We shall also present a result on quasi-tight framelets whose associated high-pass filters are purely differencing filters with the highest order of vanishing moments. Several examples will be provided to illustrate our main theoretical results and algorithms in this paper. (C) 2018 Elsevier Inc. All rights reserved.
机译:已知多变量紧密帧的构造是一个具有挑战性的问题,因为它与真实代数几何形状中多变量多项式的平方和的难题相关。随着消失的力矩的多变量双帧概括了紧密帧,并且不容易构造,因为它们的结构与SyzyyGy模块相关和多变量多项式的分解。另一方面,具有方向性或高消失矩的紧凑型多变量帧在理论和应用中具有感兴趣和重要性。在本文中,我们介绍了一种准紧框架的概念,这是一个双架,但表现几乎就像一个紧张的框架。让PHI是L-2(RD)的一个元素,是一般的紧凑型支持的实值M-可再折叠功能,其上盖(0)= 1上的普通扩张矩阵M和(PHI),使得其底层的Realaliged低通滤波器满足基本和规则。我们首先通过逐步的算法建设性地证明我们可以始终容易地从任意M-可再造油功能PHI获得与定向相关的L-2(RD)中的定向紧凑型Quali-Telate M-Frame准密闭M-Framefet滤波器组,每个高通滤波器都有一个消失的力矩,只有两个非零系数。如果另外,其低通滤波器的所有系数是非负的,则这种准密闭的M帧在L-2(R-D)中成为定向的紧密M轴。此外,我们通过建设性算法显示,我们可以始终从任意的M-可再造油功能0派生L-2(R-D)中的紧凑型支持的准密闭M-Framewelet,具有消失的时刻的最高阶数。我们还应出现对准紧密帧的结果,其相关的高通滤波器是纯粹的差异差异,具有消失的时刻的最高阶。将提供几个例子以说明本文的主要理论结果和算法。 (c)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号