首页> 外文期刊>Applied and Computational Harmonic Analysis >Probabilistic tight frames and representation of Positive Operator-Valued Measures
【24h】

Probabilistic tight frames and representation of Positive Operator-Valued Measures

机译:概率的紧密框架和积极操作员有价值措施的表示

获取原文
获取原文并翻译 | 示例

摘要

In this paper we solve an open problem posed in [10] related to the representation of Positive Operator-Valued Measures by means of tight probabilistic frames in R-d. Also, we investigate how far is the closest probabilistic tight frame from a given probability measure where the distance used is the quadratic Wasserstein metric W-2 used for optimal transportation problem for measures. In particular, we study the optimization problem I(mu, K) := inf(nu epsilon T(K)) W-2(2)(mu, nu) v), where T(K) is the set of all probabilistic tight frames whose supports are contained in K = R-d or K = Sd-1. This problem is solved and its optimum is given when the mean vector of mu is zero. In the other cases, we give concise upper and lower bounds for I(mu, K). (C) 2018 Elsevier Inc. All rights reserved.
机译:在本文中,我们通过R-D中的概率框架解决了与正算子值测量的表示相关的打开问题。此外,我们研究了来自给定概率措施的最接近概率的紧密框架,其中使用的距离是用于最佳运输问题的二次Wassersein公制W-2。特别地,我们研究了优化问题i(mu,k):= inf(nu epsilon t(k))w-2(2)(mu,nu)v),其中t(k)是所有概率的集合k = rd或k = sd-1中包含的紧密帧。当MU的平均载体为零时,给出这个问题并给出了它的最佳。在其他情况下,我们为i(mu,k)提供简洁的上限和下限。 (c)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号