首页> 外文期刊>Applied and Computational Harmonic Analysis >Probabilistic tight frames and representation of Positive Operator-Valued Measures
【24h】

Probabilistic tight frames and representation of Positive Operator-Valued Measures

机译:概率紧框架和正算值表示

获取原文
获取原文并翻译 | 示例

摘要

In this paper we solve an open problem posed in [10] related to the representation of Positive Operator-Valued Measures by means of tight probabilistic frames in R-d. Also, we investigate how far is the closest probabilistic tight frame from a given probability measure where the distance used is the quadratic Wasserstein metric W-2 used for optimal transportation problem for measures. In particular, we study the optimization problem I(mu, K) := inf(nu epsilon T(K)) W-2(2)(mu, nu) v), where T(K) is the set of all probabilistic tight frames whose supports are contained in K = R-d or K = Sd-1. This problem is solved and its optimum is given when the mean vector of mu is zero. In the other cases, we give concise upper and lower bounds for I(mu, K). (C) 2018 Elsevier Inc. All rights reserved.
机译:在本文中,我们通过紧紧的概率框架在R-d中解决了[10]中提出的与正算子值测度表示有关的开放问题。同样,我们研究距给定概率测度最近的概率紧框架有多远,其中使用的距离是用于测量最优运输问题的二次Wasserstein测度W-2。特别地,我们研究优化问题I(mu,K):= inf(nu epsilon T(K))W-2(2)(mu,nu)v),其中T(K)是所有概率的集合支撑在K = Rd或K = Sd-1中的紧框架。当mu的均值向量为零时,此问题得以解决并给出了最优解。在其他情况下,我们给出I(mu,K)的简洁上限和下限。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号