首页> 外文期刊>Applied and Computational Harmonic Analysis >On the solution of elliptic partial differential equations on regions with corners Ⅱ: Detailed analysis
【24h】

On the solution of elliptic partial differential equations on regions with corners Ⅱ: Detailed analysis

机译:关于带有角的区域上的椭圆型偏微分方程的求解Ⅱ:详细分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper we investigate the solution of boundary value problems on polygonal domains for elliptic partial differential equations. Previously, we observed that when the boundary value problems are formulated as boundary integral equations of classical potential theory, the solutions are representable by series of elementary functions, to arbitrary order, for all but finitely many values of the angles. Here, we extend this observation to all values of the angles. We show that the solutions near corners are representable, to arbitrary order, by linear combinations of certain non-integer powers and non-integer powers multiplied by logarithms. (C) 2017 Elsevier Inc. All rights reserved.
机译:在本文中,我们研究了椭圆型偏微分方程在多边形域上的边值问题的解决方案。以前,我们观察到,当将边值问题表述为经典势能理论的边界积分方程时,对于所有角度(但数量有限),这些解可以由一系列基本函数以任意顺序表示。在这里,我们将此观察扩展到所有角度值。我们表明,通过将某些非整数幂和非整数幂乘以对数的线性组合,可以将角附近的解表示为任意顺序。 (C)2017 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号