首页> 外文期刊>Applied and Computational Harmonic Analysis >Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising
【24h】

Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising

机译:通过小波复原图像:同时分解,去模糊和去噪

获取原文
获取原文并翻译 | 示例

摘要

Inspired by papers of Vese-Osher [Modeling textures with total variation minimization and oscillating patterns in image processing, Technical Report 02-19, 2002] and Osher-Sole-Vese [Image decomposition and restoration using total variation minimization and the H~(-1) norm, Technical Report 02-57, 2002] we present a wavelet-based treatment of variational problems arising in the field of image processing. In particular, we follow their approach and discuss a special class of variational functionals that induce a decomposition of images into oscillating and cartoon components and possibly an appropriate 'noise' component. In the setting of [Modeling textures with total variation minimization and oscillating patterns in image processing, Technical Report 02-19, 2002] and [Image decomposition and restoration using total variation minimization and the H~(-1) norm, Technical Report 02-57, 2002], the cartoon component of an image is modeled by a BV function; the corresponding incorporation of BV penalty . terms in the variational functional leads to PDE schemes that are numerically intensive. By replacing the BV penalty term by a B_1~1 (L_1) term (which amounts to a slightly stronger constraint on the minimizer), and writing the problem in a wavelet framework, we obtain elegant and numerically efficient schemes with results very similar to those obtained in [Modeling textures with total variation minimization and oscillating patterns in image processing, Technical Report 02-19, 2002] and [Image decomposition and restoration using total variation minimization and the H~(-1) norm, Technical Report 02-57, 2002]. This approach allows us, moreover, to incorporate general bounded linear blur operators into the problem so that the minimization leads to a simultaneous decomposition, deblurring and denoising.
机译:受到Vese-Osher [在图像处理中使用总变化最小化和振动模式建模纹理,技术报告02-19,2002]和Osher-Sole-Vese [使用总变化最小化和H〜(- 1)规范,技术报告02-57,2002],我们提出了一种基于小波的图像处理领域中出现的变异问题的处理方法。特别是,我们遵循他们的方法,并讨论一类特殊的变分函数,这些函数会导致图像分解为振荡和卡通成分,并可能分解为适当的“噪声”成分。在[在图像处理中使用总变化最小化和振动模式对纹理建模时,技术报告02-19,2002]和[使用总变化最小化和H〜(-1)规范进行图像分解和恢复,技术报告02- [57,2002]中,图像的卡通成分是通过BV函数建模的; BV罚款的相应纳入。变分函数中的术语导致PDE方案在数值上是密集的。通过用B_1〜1(L_1)项代替BV惩罚项(这对最小化器的约束要强一些),并将问题写在小波框架中,我们得到了优雅且数值有效的方案,其结果与那些方案非常相似在[使用图像中的总变化最小化和振动模式对纹理进行建模,技术报告02-19,2002]和[使用总变化最小化和H〜(-1)规范进行图像分解和恢复,技术报告02-57)中获得2002]。而且,这种方法使我们能够将一般的有界线性模糊算子合并到问题中,从而使最小化导致同时分解,去模糊和去噪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号