首页> 外文期刊>Applied and Computational Harmonic Analysis >Nonlinear wavelet thresholding: A recursive method to determine the optimal denoising threshold
【24h】

Nonlinear wavelet thresholding: A recursive method to determine the optimal denoising threshold

机译:非线性小波阈值确定最佳去噪阈值的递归方法

获取原文
获取原文并翻译 | 示例

摘要

Nonlinear thresholding of wavelet coefficients is an efficient method for denoising signals with isolated singularities. The quasi-optimal value of the threshold depends on the sample size and on the variance of the noise, which is in many situations unknown. We present a recursive algorithm to estimate the variance of the noise, prove its convergence and investigate its mathematical properties. We show that the limit threshold depends on the probability density function (PDF) of the noisy signal and that it is equal to the theoretical threshold provided that the wavelet representation of the signal is sufficiently sparse. Numerical tests confirm these results and show the competitiveness of the algorithm compared to the median absolute deviation method (MAD) in terms of computational cost for strongly noised signals.
机译:小波系数的非线性阈值化是一种有效的方法,用于对具有孤立奇异点的信号进行去噪。阈值的准最佳值取决于样本大小和噪声方差,在许多情况下这是未知的。我们提出一种递归算法来估计噪声的方差,证明其收敛性并研究其数学特性。我们表明,极限阈值取决于噪声信号的概率密度函数(PDF),并且只要信号的小波表示足够稀疏,它就等于理论阈值。数值测试证实了这些结果,并显示了与中值绝对偏差法(MAD)相比,该算法在强噪声信号的计算成本方面的竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号