首页> 外文期刊>Applied and Computational Harmonic Analysis >Multi-scale geometric methods for data sets II: Geometric Multi-Resolution Analysis
【24h】

Multi-scale geometric methods for data sets II: Geometric Multi-Resolution Analysis

机译:数据集的多尺度几何方法II:几何多分辨率分析

获取原文
获取原文并翻译 | 示例

摘要

Data sets are often modeled as samples from a probability distribution in M~D, for D large. It is often assumed that the data has some interesting low-dimensional structure, for example that of a d-dimensional manifold M, with d much smaller than D. When M is simply a linear subspace, one may exploit this assumption for encoding efficiently the data by projecting onto a dictionary of d vectors in R~D (for example found by SVD), at a cost (n + D)d for n data points. When M is nonlinear, there are no "explicit" and algorithmically efficient constructions of dictionaries that achieve a similar efficiency: typically one uses either random dictionaries, or dictionaries obtained by black-box global optimization. In this paper we construct data-dependent multi-scale dictionaries that aim at efficiently encoding and manipulating the data. Their construction is fast, and so are the algorithms that map data points to dictionary coefficients and vice versa, in contrast with L~1-type sparsity-seeking algorithms, but like adaptive nonlinear approximation in classical multi-scale analysis. In addition, data points are guaranteed to have a compressible representation in terms of the dictionary, depending on the assumptions on the geometry of the underlying probability distribution.
机译:对于D大,通常将数据集建模为M〜D中概率分布的样本。通常假设数据具有一些有趣的低维结构,例如d维流形M的维,其d远小于D。当M仅是线性子空间时,可以利用这一假设对有效编码通过投影到R〜D中的d个向量的字典(例如,由SVD找到)来存储数据,对于n个数据点而言,代价为(n + D)d。当M为非线性时,不存在达到类似效率的“显式”且算法高效的字典构造:通常使用随机字典或通过黑盒全局优化获得的字典。在本文中,我们构建了数据相关的多尺度字典,旨在有效地编码和处理数据。与L〜1型稀疏算法相比,它们的构造速度很快,将数据点映射到字典系数的算法也是如此,反之亦然,但是与经典多尺度分析中的自适应非线性逼近相反。另外,根据对基础概率分布的几何假设,保证数据点在字典方面具有可压缩的表示形式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号