首页> 外文期刊>Applied and Computational Harmonic Analysis >Matrix splitting with symmetry and symmetric tight framelet filter banks with two high-pass filters
【24h】

Matrix splitting with symmetry and symmetric tight framelet filter banks with two high-pass filters

机译:具有两个高通滤波器的对称对称对称紧框架滤波器组

获取原文
获取原文并翻译 | 示例

摘要

The oblique extension principle introduced in Chui et al. (2002), Daubechies et al. (2003) [3,5] is a general procedure to construct tight wavelet frames and their associated filter banks. Symmetric tight framelet filter banks with two high-pass filters have been studied in Han and Mo (2004), Mo and Zhuang (in press), Petukhov (2003) [13.16.17]. Tight framelet filter banks with or without symmetry have been constructed in many papers in the literature. This paper is largely motivated by several results in Han (2010), Han and Mo (2004), Petukhov (2003) [11,13,17] to further study tight wavelet frames and their associated filter banks with symmetry and two high-pass filters. Our study not only leads to a simpler algorithm for the construction of tight framelet filter banks with symmetry and two high-pass filters, but also allows us to obtain a wider class of tight wavelet frames with symmetry which are not available in the current literature. The key ingredient in our investigation is a complete characterization of splitting positive semi-definite 2×2 matrices of Laurent polynomials with symmetry. Several examples are provided to illustrate the results and algorithms in this paper.
机译:倾斜延伸原理在Chui等人中介绍。 (2002),Daubechies等。 (2003)[3,5]是构造紧小波框架及其相关滤波器组的一般程序。 Han和Mo(2004),Mo和Zhuang(印刷中),Petukhov(2003)[13.16.17]研究了带有两个高通滤波器的对称紧框架滤波器组。文献中的许多论文中都构造了具有或不具有对称性的紧小框架滤波器组。本文的主要动机是基于Han(2010),Han和Mo(2004),Petukhov(2003)[11,13,17]的一些结果,以对称和两个高通进一步研究紧小波框架及其相关的滤波器组。过滤器。我们的研究不仅为构造具有对称性的紧小框架滤波器组和两个高通滤波器提供了一种更简单的算法,而且使我们能够获得更广泛的一类具有对称性的紧小波框架,这在当前文献中是不可用的。我们研究的关键因素是对具有对称性的Laurent多项式的正半定2×2矩阵的完全刻划。提供了一些示例来说明本文的结果和算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号