首页> 外文期刊>Applied and Computational Harmonic Analysis >Sparse representation on-graphs by tight wavelet frames and applications
【24h】

Sparse representation on-graphs by tight wavelet frames and applications

机译:紧小波框架在应用中的稀疏表示

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a new (constructive) characterization of tight wavelet frames on non-flat domains in both continuum setting, i.e. on manifolds, and discrete setting, i.e. 'on graphs; we discuss how fast tight wavelet frame transforms can be computed and how they can be effectively used to process graph data. We start with defining the quasi-affine systems on a given manifold The quasi-affine system is formed by generalized dilations and shifts of a finite collection of wavelet functions Psi := : psi(j) <= j <= r} subset of L2 (R). We further require that psi(iota),,, is generated by some refinable function j with mask a(J). We present the condition' needed for the masks {aj : 0 <= j <= r}, as well as regularity conditions needed for phi and psi(j), so that the associated quasi-affine system generated by IF is a tight frame for L2(M). The condition needed for the masks is a simple set of algebraic equations which are not only easy to verify for a given set of masks {a(j)}, but also make the construction of {a(j)} entirely painless. Then, we discuss how the transition from the continuum (manifolds) to the discrete setting (graphs) can be naturally done. In order for the proposed discrete tight wavelet frame transforms to be useful in applications, we show how the transforms can be computed efficiently and accurately by proposing the fast tight wavelet frame transforms for graph data (WFTG). Finally, we consider two specific applications of the proposed WFTG: graph data derioising and semi supervised clustering. Utilizing the sparse representation provided by the WFTG, we propose l(1)-norm based optimization models on graphs for denoising and semi supervised clustering. On one hand, our numerical results show significant advantage of the WFTG over the spectral graph wavelet transform (SGWT) by [1] for both applications. On the other hand, numerical experiments on two real data sets show that the proposed semi-supervised clustering model using the WFTG is overall competitive with the state-of-the-art methods developed in the literature of highdimensional"data classification, and is superior to some of these methods. (C) 2015 Elsevier Inc. All rights reserved.
机译:在本文中,我们介绍了在连续平面设置(即流形上)和离散设置(即在图上;我们讨论如何快速计算紧小波框架变换以及如何有效地使用它们来处理图形数据。我们从在给定流形上定义拟仿射系统开始。拟仿射系统由广义扩张和小波函数Psi的有限集合的平移形成:Psi:=:psi(j)<= j <= r} L2的子集(R)。我们进一步要求psi(iota)由一些带有掩码a(J)的可精炼函数j生成。我们给出了遮罩{aj:0 <= j <= r}所需的条件,以及phi和psi(j)所需的规则性条件,因此,由IF生成的相关拟仿射系统是一个紧框架对于L2(M)。掩码所需的条件是一组简单的代数方程组,不仅易于验证给定的一组掩码{a(j)},而且使{a(j)}的构造完全轻松。然后,我们讨论如何自然地完成从连续体(流形)到离散设置(图形)的过渡。为了使所提出的离散紧小波框架变换在应用中有用,我们展示了如何通过提出针对图数据的快速紧小波框架变换(WFTG)来高效,准确地计算变换。最后,我们考虑了所提出的WFTG的两个特定应用:图形数据除杂和半监督聚类。利用WFTG提供的稀疏表示,我们在图上提出了基于l(1)-范数的优化模型,用于去噪和半监督聚类。一方面,对于两种应用,我们的数值结果表明WFTG优于[1]的频谱图小波变换(SGWT)。另一方面,在两个真实数据集上的数值实验表明,使用WFTG提出的半监督聚类模型与高维“数据分类”文献中开发的最新方法具有总体竞争力,并且具有优越性(C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号