首页> 外文期刊>Applied Acoustics >Diagnostics and prognostics of planetary gearbox using CWT, auto regression (AR) and K-means algorithm
【24h】

Diagnostics and prognostics of planetary gearbox using CWT, auto regression (AR) and K-means algorithm

机译:使用CWT,自动回归(AR)和K均值算法的行星齿轮箱的诊断和预测

获取原文
获取原文并翻译 | 示例

摘要

Condition monitoring of machine is recognized as effective strategy for undertaking the maintenance in wide variety of industries. Planetary gearbox is a critical component in helicopters, wind turbines, hybrid vehicles and so forth. Planetary gearbox are complex in nature due to its size and meshing components. Condition monitoring and fault diagnosis of planetary gearbox is challenging due to complexity in dependable fault extraction from raw vibration signal. The mechanism of planetary gearbox is complex as there are several gears meshing at the same time. To find out the nature of fault and defective component in planetary gearbox is difficult. In this paper, the fault detection and fault type identification diagnostic approach using auto regression model (AR) and continuous wavelet transforms (CWT) by considering different frequency range is established. The experimental research conducted with different type of fault vibration signals in the gearbox have been diagnosed and identified the fault type using AR Modelling, Impulse and Shape Factor for validation purposes. The unique behaviors and fault characteristics of planetary gearboxes are identified and analyzed. The fault frequency identification and extraction of features from the non-stationary signals in different fault severity level of vibration data demonstrates the reliability of proposed method. The developed algorithm adds efficacy in detecting the nature of fault and defective component without performing a visual inspection. (C) 2021 Elsevier Ltd. All rights reserved.
机译:机器的情况监测被认为是在各种行业中进行维护的有效策略。行星齿轮箱是直升机,风力涡轮机,混合动力车辆等的关键部件。由于其尺寸和啮合组件,行星齿轮箱具有复杂的。由于原始振动信号的可靠故障提取,行星齿轮箱的状态监测和故障诊断是具有挑战性的。行星齿轮箱的机制很复杂,因为有几个齿轮同时啮合。要了解行星齿轮箱中故障和有缺陷部件的性质是困难的。在本文中,建立了通过考虑不同频率范围的自动回归模型(AR)和连续小波变换(CWT)的故障检测和故障类型识别诊断方法。通过齿轮箱中的不同类型的故障振动信号进行的实验研究已经被诊断出,并使用AR建模,脉冲和形状因子进行验证目的的故障类型。鉴定并分析了行星齿轮箱的独特行为和故障特性。来自振动数据不同故障严重程度的非静止信号的故障频率识别和提取来自振动数据的不同级别展示了所提出的方法的可靠性。发达的算法在不进行目视检查的情况下增加了检测故障和有缺陷组件的性质的功效。 (c)2021 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号