首页> 外文期刊>Applications of Mathematics >SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR THE SOLUTION OF FLUID-STRUCTURE INTERACTION
【24h】

SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR THE SOLUTION OF FLUID-STRUCTURE INTERACTION

机译:时空不连续伽辽金法求解流体-结构相互作用

获取原文
获取原文并翻译 | 示例

摘要

The paper is concerned with the application of the space-time discontinuous Galerkin method (STDGM) to the numerical solution of the interaction of a compressible flow and an elastic structure. The flow is described by the system of compressible Navier-Stokes equations written in the conservative form. They are coupled with the dynamic elasticity system of equations describing the deformation of the elastic body, induced by the aerodynamical force on the interface between the gas and the elastic structure. The domain occupied by the fluid depends on time. It is taken into account in the Navier-Stokes equations rewritten with the aid of the arbitrary Lagrangian-Eulerian (ALE) method. The resulting coupled system is discretized by the STDGM using piecewise polynomial approximations of the sought solution both in space and time. The developed method can be applied to the solution of the compressible flow for a wide range of Mach numbers and Reynolds numbers. For the simulation of elastic deformations two models are used: the linear elasticity model and the nonlinear neo-Hookean model. The main goal is to show the robustness and applicability of the method to the simulation of the air flow in a simplified model of human vocal tract and the flow induced vocal folds vibrations. It will also be shown that in this case the linear elasticity model is not adequate and it is necessary to apply the nonlinear model.
机译:本文涉及时空不连续伽勒金方法(STDGM)在可压缩流与弹性结构相互作用的数值解中的应用。用保守形式写的可压缩Navier-Stokes方程组描述流量。它们与方程的动态弹性系统耦合,该方程描述了气体和弹性结构之间界面上的空气动力引起的弹性体变形。流体占据的区域取决于时间。在借助任意拉格朗日-欧拉(ALE)方法重写的Navier-Stokes方程中考虑了这一点。 STDGM使用所寻找解决方案的空间和时间分段多项式逼近来离散所得的耦合系统。所开发的方法可以应用于多种马赫数和雷诺数的可压缩流的解。为了模拟弹性变形,使用了两个模型:线性弹性模型和非线性新胡克模型。主要目的是在简化的人类声道和气流诱发的声带振动模型中显示该方法在模拟气流中的鲁棒性和适用性。还将表明,在这种情况下,线性弹性模型是不够的,因此有必要应用非线性模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号