首页> 外文期刊>Applications of Mathematics >PARTITION OF UNITY METHOD FOR HELMHOLTZ EQUATION: q-CONVERGENCE FOR PLANE-WAVE AND WAVE-BAND LOCAL BASES
【24h】

PARTITION OF UNITY METHOD FOR HELMHOLTZ EQUATION: q-CONVERGENCE FOR PLANE-WAVE AND WAVE-BAND LOCAL BASES

机译:赫尔姆霍茨方程的统一方法的划分:平面波和波带局部基波的q收敛

获取原文
获取原文并翻译 | 示例

摘要

In this paper we study the q-version of the Partition of Unity Method for the Helmholtz equation. The method is obtained by employing the standard bilinear finite element basis on a mesh of quadrilaterals discretizing the domain as the Partition of Unity used to paste together local bases of special wave-functions employed at the mesh vertices. The main topic of the paper is the comparison of the performance of the method for two choices of local basis functions, namely a) plane-waves, and b) wave-bands. We establish the q-convergence of the method for the class of analytical solutions, with q denoting the number of plane-waves or wave-bands employed at each vertex, for which we get better than exponential convergence for sufficiently small h, the mesh-size of the employed mesh. We also discuss the a-posteriori estimation for any solution quantity of interest and the problem of quadrature for all integrals employed. The goal of the paper is to stimulate theoretical development which could explain various numerical features. A main open question is the analysis of the pollution and its disappearance as function of h and q.
机译:在本文中,我们研究了Helmholtz方程的Unity方法分区的q版本。该方法是通过在离散该域的四边形网格上采用标准双线性有限元基础而获得的,该网格将域划分为用于将网格顶点处使用的特殊波动函数的局部基粘贴在一起的Unity分区。本文的主要主题是比较两种局部基函数选择方法的性能,即a)平面波和b)波段。我们建立了用于解析解类的方法的q收敛性,其中q表示每个顶点处使用的平面波或波段的数量,对于足够小的h,对于网格,我们得到的效果优于指数收敛。所用网格的大小。我们还将讨论感兴趣的任何解决方案量的后验估计以及所用所有积分的正交问题。本文的目的是刺激理论的发展,可以解释各种数值特征。一个主要的开放性问题是对污染及其消失与h和q的函数关系的分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号