首页> 外文期刊>IEEE Transactions on Antennas and Propagation >Generalized Analytical Technique for the Synthesis of Unequally Spaced Arrays With Linear, Planar, Cylindrical or Spherical Geometry
【24h】

Generalized Analytical Technique for the Synthesis of Unequally Spaced Arrays With Linear, Planar, Cylindrical or Spherical Geometry

机译:具有线性,平面,圆柱或球形几何形状的不等距阵列的合成的通用分析技术

获取原文
获取原文并翻译 | 示例

摘要

An effective method for optimizing the performance of a fixed current distribution, uniformly spaced antenna array has been to adjust its element positions to provide performance improvement. In comparison with the default uniform structure, this approach yields performance improvements such as smaller sidelobe levels or beamwidth values. Additionally, it provides practical advantages such as reductions in size, weight and number of antenna elements. The objective of this paper is to describe a unified mathematical approach to nonlinear optimization of multidimensional array geometries. The approach utilizes a class of limiting properties of sinusoidal, Bessel or Legendre functions that are dictated by the array geometry addressed. The efficacy of the method is demonstrated by its generalized application to synthesis of rectangular, cylindrical and spherical arrays. The unified mathematical approach presented below is a synthesis technique founded on the mathematical transformation of the desired field pattern, followed by the application of limiting forms of the transformation, and resulting in the development of a closed form expression for the element positions. The method offers the following advantages over previous techniques such as direct nonlinear optimization or genetic algorithms. First, it is not an iterative, searching algorithm, and provides element spacing values directly in a single run of the algorithm, thereby saving valuable CPU time and memory storage. Second, It permits the array designer to place practical constraints on the array geometry, (e.g., the minimum/maximum spacing between adjacent elements).
机译:优化固定电流分布,均匀间隔天线阵列性能的有效方法是调整其元件位置以提高性能。与默认的统一结构相比,此方法可改善性能,例如较小的旁瓣电平或波束宽度值。另外,它提供了实际的优点,例如减小了天线元件的尺寸,重量和数量。本文的目的是描述用于多维数组几何形状非线性优化的统一数学方法。该方法利用了一类正弦函数,贝塞尔函数或勒让德函数的极限特性,这些极限特性由所解决的阵列几何形状决定。该方法的有效性通过将其普遍应用于矩形,圆柱形和球形阵列的合成而得到证明。下面介绍的统一数学方法是一种基于所需场模式的数学变换的合成技术,然后应用变换的限制形式,并导致针对元素位置的闭合形式表达式的开发。与直接非线性优化或遗传算法等先前技术相比,该方法具有以下优点。首先,它不是迭代的搜索算法,而是直接在算法的一次运行中直接提供元素间距值,从而节省了宝贵的CPU时间和内存存储。其次,它允许阵列设计者对阵列的几何形状施加实际的限制(例如,相邻元件之间的最小/最大间距)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号