首页> 外文期刊>IEEE Transactions on Antennas and Propagation >Analytical Solution to the n -nth Moment Equation of Wave Propagation in Continuous Random Media
【24h】

Analytical Solution to the n -nth Moment Equation of Wave Propagation in Continuous Random Media

机译:连续随机介质中波传播第n -n阶矩方程的解析解

获取原文
获取原文并翻译 | 示例

摘要

Higher order symmetrical moments play an important role in wave propagation and scattering in random media, however it remains to be solved under strong fluctuations. In this paper, a modified Gaussian solution method is proposed for analytically solving the n-nth moment. After propagating through a random medium in the fully saturated regime, the higher order symmetrical moment of the received wave is the sum of products of the second moments, i.e., the Gaussian solution. In strong scattering regimes, the higher order symmetrical moment can be considered as a sum of the Gaussian solution and a non-Gaussian correction term, where the key issue is how to solve the derived equation of the correction term. Two methods are proposed, i.e., Green's function method and the Rytov approximation approach. Green's function method leads to a rigorous solution form, but it is complicated due to an integral equation. The approach using the Rytov approximation is found to be reasonable, as the correction is relatively small
机译:高阶对称矩在随机介质中的波传播和散射中起着重要作用,但是在强烈波动下仍然有待解决。本文提出了一种改进的高斯解法来解析n-n阶矩。在完全饱和状态下通过随机介质传播之后,接收波的高阶对称矩是第二阶矩的乘积之和,即高斯解。在强散射状态下,可以将高阶对称矩视为高斯解和非高斯校正项的和,其中关键问题是如何求解校正项的派生方程。提出了两种方法,即格林函数方法和Rytov逼近方法。格林函数方法导致了严格的解形式,但是由于积分方程的缘故,它变得复杂。发现使用Rytov近似的方法是合理的,因为校正相对较小

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号