首页> 外文期刊>IEEE Transactions on Antennas and Propagation >Hierarchical Bases for Nonhierarchic 3-D Triangular Meshes
【24h】

Hierarchical Bases for Nonhierarchic 3-D Triangular Meshes

机译:非分层3-D三角网格的分层基础

获取原文
获取原文并翻译 | 示例

摘要

We describe a novel basis of hierarchical, multiscale functions that are linear combinations of standard Rao-Wilton-Glisson (RWG) functions. When the basis is used for discretizing the electric field integral equation (EFIE) for PEC objects it gives rise to a linear system immune from low-frequency breakdown, and well conditioned for dense meshes. The proposed scheme can be applied to any mesh with triangular facets, and therefore it can be used as if it were an algebraic preconditioner. The properties of the new system are confirmed by numerical results that show fast convergence rates of iterative solvers, significantly better than those for the loop-tree basis. As a byproduct of the basis generation, a generalization of the RWG functions to nonsimplex cells is introduced.
机译:我们描述了分层,多尺度函数的新颖基础,这些函数是标准Rao-Wilton-Glisson(RWG)函数的线性组合。当使用该基础离散化PEC对象的电场积分方程(EFIE)时,它会产生一个不受低频击穿影响的线性系统,并且对于稠密的网格具有良好的条件。提出的方案可以应用于具有三角形小面的任何网格,因此可以像代数预处理器一样使用。数值结果证实了新系统的性质,数值结果显示了迭代求解器的快速收敛速度,明显优于基于循环树的迭代速度。作为基础生成的副产品,介绍了RWG函数到非简单单元的泛化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号