首页> 外文期刊>Antennas and Propagation, IEEE Transactions on >Time-Domain Microwave Imaging of Inhomogeneous Debye Dispersive Scatterers
【24h】

Time-Domain Microwave Imaging of Inhomogeneous Debye Dispersive Scatterers

机译:非均质德拜色散散射器的时域微波成像

获取原文
获取原文并翻译 | 示例

摘要

A time-domain inverse scattering method for the reconstruction of inhomogeneous dispersive media described by the Debye model is presented. The method aims to the simultaneous reconstruction of the spatial distributions of the optical and static permittivity as well as of the relaxation time. The reconstruction of the scatterer is based on the minimization of a cost functional, which describes the difference between measured and estimated values of the electric field. The fulfillment of the Maxwell''s curl equations is set as constraint by means of Lagrange multipliers in an augmented functional. The Fréchet derivatives with respect to the scatterer properties are derived analytically and can be utilized by any gradient-based optimization technique. The proposed reconstruction technique is based on the Polak-Ribière nonlinear conjugate-gradient algorithm, while the finite-difference time-domain (FDTD) method is employed for the solution of the direct and the adjoint electromagnetic problem. Numerical results for the reconstruction of one-dimensional layered scatterers illustrate the performance of the proposed method.
机译:提出了一种时域逆散射方法,用于重建Debye模型描述的非均匀分散介质。该方法旨在同时重建光学和静态介电常数的空间分布以及弛豫时间。散射体的重建基于成本函数的最小化,成本函数描述了电场的测量值与估计值之间的差异。通过扩展函数中的拉格朗日乘数,将麦克斯韦的卷曲方程的满足条件设置为约束。关于散射体特性的Fréchet导数是通过解析得出的,可用于任何基于梯度的优化技术。所提出的重建技术是基于Polak-Ribière非线性共轭梯度算法,而有限差分时域(FDTD)方法用于解决直接电磁问题和伴随电磁问题。重建一维分层散射体的数值结果说明了该方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号