首页> 外文期刊>Antennas and Propagation, IEEE Transactions on >Penalty Factor Threshold and Time Step Bound Estimations for Discontinuous Galerkin Time-Domain Method Based on Helmholtz Equation
【24h】

Penalty Factor Threshold and Time Step Bound Estimations for Discontinuous Galerkin Time-Domain Method Based on Helmholtz Equation

机译:基于Helmholtz方程的不连续Galerkin时域方法的惩罚因子阈值和时间步骤累积估计

获取原文
获取原文并翻译 | 示例

摘要

In this article, penalty factor threshold and time step bound in discontinuous Galerkin time method based on vector wave equation (DGTD-WE) method are well estimated. Based on the semidiscrete form of the DGTD-WE method, properties of the system matrices are studied and the stability condition related to the penalty factor is derived. By decomposing the global system matrices of the DGTD-WE method into the local ones and developing an efficient iteration procedure, the lower bound threshold of the penalty factor is well estimated to guarantee the positive semidefinite property of the global system matrices. With the calculated penalty factor, the maximum time step is analytically determined by approximating spectral radius of the local system matrix. Both the penalty factor bound and the maximal time step are computed element-wise instead of a global system matrix operation, and thus, the proposed method can be efficiently applied into the large-scale meshes with different types of the basis functions and boundary conditions. Numerical examples are presented to demonstrate the validity and good performance of the proposed methods.
机译:在本文中,基于向量波方程(DGTD-WE)方法的不连续的Galerkin时间方法中的惩罚因子阈值和时间步长被估计。基于DGTD-WE方法的半同晶体形式,研究了系统矩阵的属性,派生了与惩罚系数相关的稳定性条件。通过将DGTD-WE方法的全球系统矩阵分解到本地矩阵并开发有效的迭代过程,估计惩罚系数的下限阈值估计是为了保证全局系统矩阵的正半纤维属性。利用计算的惩罚因子,通过近似局部系统矩阵的光谱半径来分析最大时间步骤。罚款系数绑定和最大时间步长都是计算元素的,而不是全局系统矩阵操作,因此,所提出的方法可以有效地应用于具有不同类型的基本函数和边界条件的大规模网格中。提出了数值例证以证明所提出的方法的有效性和良好性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号